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CLOSED-LOOP SYSTEM ANALYSIS USING

LYAPUNOV STABILITY THEORY

Publication No.

Paul Louis Vergez, Ph.D.

Thc University of Texas at Austin, 1986

Supervising Professor: Jason Speyer

" A special class of closed-loop systems composed

of a controller and observer in cascade are analyzed.

The plant dynamics. are assumed to be - linear and time-

varying but the system parameters are uncertain. The

class of observation functions is restricted to those

that can be transformed into a linear structure in the

state called pseudo-linear measurements where the coef-

ficient may be an explicit function of the original

measurements. If along a given path the state vector is

observable, then the estimation error of a linear ob-

server structure can be shown to be asymptotically

stable. The emphasis is on deriving and analyzing gen-

eral Lyapunov functions which indicate system stability

or a measure of system perf-rmance under parameter vari-
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ations. The first Lyapunov function is developed by

combining the separate controller and observer Lyapunov

functions, both of which are quadratic. This combined

Lyapunov function is not valid for all linear, time-

varying, closed-loop systems.- However, the weightings

in the controller performance index are scaled such that

the combined Lyapunov function is valid for these sys-

tems. Further, this Lyapunov function provides a means

for developing a more stable system through an overall

design selection of the controller and observer parame-

ters.

A second Lyapunov function is derived to account

for the system where the controller is a function of the

estimated states. This Lyapunov function is valid for

linear, time-varying, closed-loop systems.

-A third Lyapunov function is derived to directly

account for parameter uncertainties in the system model.

This Lyapunov function is very useful in identifying

system instabilities, given system parameter variations.

All three Lyapunov functions are valid for linear,

time-varying, and certain classes of nonlinear systems.

For linear, time-varying, finite-time problems, the

Lyapunov function derived for system parameter varia-

tions is used to provide a measure of system performance

/J
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given these system variations. This Lyap~nov function

is also used to provide a measure of system performance

for the homing missile guidance problem.

A new control law is developed to improve the

performance of the pseudomeasurement observer in the

guidance loop. The control law is developed from linear

quadratic Gaussian theory to minimize the final relative

position states and, in addition, improve the

psuedomeasur ement observer's performance by increasing

the observability Grammian matrix. Because of the linear

quadratic nature of the problem, a closed-form solution

is obtained. The performance gain is measured by the

Lyapunov function.
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SECTION I

INTRODUCTION

1.1 Background

The focus of this research is in two areas. Tne

first part is to develop a means of analyzing the per-

formance of closed-loop systems with an observer in the

feedback loop, oroviding state estimates to the control

law. Particular emphasis is placed on the homing mis-

sile ouidance oroblem. For this class of problems, the

observer is nonlinear [109,129]. The second part is to

use the information provided from the stability analysis

to Jesign a better 3uinance law.

.l.! Szabi'itv Analysis

For linear, time-invariant systems, the eigen-

values of the system matrix can be used to determine
-S

stability. For continuous-time systems, the eigenvalues

of the system matrix must have negative real parts for

the system to remain stable. For discrete-time systems,

the ei~envalues of the state transition matrix must

remain within tne unit circle for the d fscrete svstem to

remain stable.

SiN
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For linear, time-varying systems, eigenvalue

analysis may not provide useful information. It is pos-

sible for the closed-loop system to be unstable even if

all the eigenvalues have negative real parts for all

t > t0 It is also possible for the system to be asymp-

totically stable even if all the eigenvalues of the

closed-loop system matrix are constant and some have po-

sitive real parts [139).

There have been efforts to apply eigenvalue

analysis to certain classes of linear, time-varying sys-

tems. Rosenbrock [1101 investigated linear , time-

varying systems in which the rate of change of the 

time-varying elements of the system matrix were suffi-

ciently small. He was able to obtain explicit bounds

fcr the time-varying elements where in the system would

remai. stable. His study was limited to system matri-

cies that were in canonical form.

In a more recent study, Wu [139] has developed a

means of determining the necessary and sufficient condi-

tions for the asymptotic stability of linear, time-

varying systems. His work involves the concept of mode

vectors. Wu defines moce vectors in terms of the ex-

tended eigenpairs (the extended eigenvalues and the ex-

tenoed eioenveztors) of tne time-vary n ... stem matrix.

For nonlinear, closed-loop systems, eigenvalue

-%~~~~~'f~~~~~ t-v.*-5 ..'%,m *4S**%
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analysis involves linearizing the system about some non-

singular operating point. This can be useful for sys-

tems with small nonlinearities; however, the stability

analysis is only valid in an arbitrarily small region

about the point of linearization.

A stability analysis concept which has received

much attention is Lyapunov's stability theory. The

theory can be applied to the class of linear systems and

certain classes of nonlinear systems, as well as certain

classes of stochastic systems. Given x(t) , an n-

dirensional vector, and an initial time, t , define

x (t) to be the nominal x(t) . x (t) is stable in the

sense of Lyapunov if to each 4>0, there corresponds a

region ( , such that for any solution, xn(t0)

whose distance from x(t,) is nt tnen

d~x n-) ,x(t) I <4 for all t, [381. This is known as

Lyacnov' s first methoc ann is aoplicaole only in a

small region near the singularity [38]. This will be

discussed in more detail in Section :I.

A useful approach to determining system stabili-

ty is the second method of Lyapunov (or the direct

method). This method involves the selection of a gen-

eralized scalar ootential function, called Lvapunov

finctior.. Tne sz'Ie_:t2 Lvaonov function is tested for

zertain conjitions that denote stability. Lyapunov

,W ]
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, W,
functions are not unique for any particular system, and

can be difficult to obtain for some systems. In addi-

tion, the second method of Lyapunov is only a sufficien-

cy test for stability. The significance of this point

is a candidate Lyapunov function that doesn't satisfy

the stability conditions, does not provide any informa-

tion concerning system stability. This means that a

different candidate function is needed for the Lyapunov

analysis. However, if a valid Lyapunov function can be

found, this method provides a powerful stability-

analysis tool.

The application of Lyapunov's second method to

linear feedback control systems and estimation algo-

rithms has received much attention [17,101]. Moore and

Anderson '101] analyzed the stability properties, via

Lyapunov's second method, for the linear, discrete-time

ont i regulator orob em. In the same nazer , tnev

developed the stability characteristics of a linear es-

timator. However, the scate estimates are not .sed in

any way in the closed-loop control systems. Song and

Speyer [119,120] applied Lyapunov's second method to a

class of nonlinear estimation algorithms which are of

the modifiable type. Modifiable implies that the non-

linearities in either the system dynamics or measurement

model can be manizulated into a linear function of he

states.



The application of Lyapunov's second method to

analyzing the stability of closed-loop control systems

containing an observer in the control/feedback loop has

received very little attention. In a recent paper by

Geering and Basar [49) , a Lyapunov function is identi-

fied for the standard linear quadratic regulator problem

with a linear, full-order state observer. They identi-

fied a Lyapunov equation for this system and used the

solution in a cost functional of the form

J = qT Vq ( .1)

where

q = [x T '  T T (1.2)

and x is the true state ani e is the observer error.

Tnis Lyapunov funczion is used to snow that tne linear

quadratic regulator problem has a superior control gain

for every arbitrary choice of the observer gain if and

only if the observer is initialized with the true state

[49).

The stability analysis of -losed-loop systems

with observers in the loop is a very important issue

Since, in most realistic environments, the full true

state information will not be available for tne control
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law. The certainty equivalence principle [39] is the

basis for combining the separately designed optimal con-

troller and optimal estimator into a cascaded optimal

feedback control system. Given this, is it possible to

say that the combination of the Lyapunov functions

designed for the separate controller and the observer

provides a valid Lyapunov function for the cascaded sys-

tem? If so, this would be an important result, since

much is known about the Lyapunov function for the linear

regulator problem and for the linear (or modifiable non-

linear) observer problem. Studies by Anderson and Moore

[5] and Song and Soever [119,120] have shown that valid

Lyapunov functions exist for the regulator and the

ohserver, separately. If the combined Lyapunov func-

tions are valid for the cascaded system, then the

closed-loop system with the observer in the loop is

stabie when t rezui~t' is st _ an tne observe-,

stable. For linear, time-invariant systems, eigenv=lue

analysis provides the same results. If the cascaded

Lvapunov function is valid, one can make the same types

of claims for linear, time-varying systems, and certain

classes of nonlinear systems.

If the combination of the two seoarate Lvavunov

functions is valid for the closed-loop system, is it the

best possible choize for this system in terms of identi-

; ing system stability? If not, is there a better
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Lyapunov function for the closed-loop system. These

issues are the basis for this research.

in addition, if Lyapunov functions can be found

for these cascaded systems, can they be put to some

practical use in analyzing stability? For instance, can

they be used to determine the effects of parameter vari-

ations on the stability of a system over a wide range of

parameter changes? If not, can a more sensitive

Lyapunov function for the cascaded system be determined?

This is one issue which is addressed in this research.

In this study, the Lyapunov functions are derived for

the cascaded controller/filter system; however, the

results are based on noiseless measurements so that the

filters can be considered as observers. In addition,

since the effort concentrates on the homing missile

oroblem (which is a nonlinear, time-varying, finite-time

proclem) , "ne Lvapunov functions are used to =rovij e a

measure of performance of the system.

1.1.2 Stability of Closed-loop Systems Under Parameter

Variations

In t he orocess of designing feedback control

systems and estimation algorithms, certain assumptions

are made. One of tne most imoortant assumptions is that

the arameters in t he model of the dynamics and tne

.. -. --- ---- . -



measurement device are accurate representations of the

true system. If this is not true, the control and esti-

mation algorithm are no longer optimal. In fact, it is

possible for the closed-loop system to be unstable

depending on how large the errors are in these parame-

ters. Speyer [122] investigated the stability charac-

teristics of linear time-invariant systems with the

estimation algorithm in the loop given that parameter

variations exist. Given the dynamic models of the con-

trol system and the filter algorithm, he restructured

the algorithms to emphasize the modelling errors. Then,

given the steady state closed-loop system matrix, he

determined the range of parameter variations for which

the real part of the eigenvalues of the system matrix

remain negative; and thus, maintaining system stability.

Speyer was able to identify a range of acceptable varia-

tions in the sy'stem narameters for which the sstem

remained stable. This type of study provides some very

useful information for the design of control and estima-

tion algorithms; however, as pointed out in the previous

section, the eigenvalue analysis is only useful for

linear time invariant problems.

Kalman and Bertram considered the idea of using

the Lyapunov function to determine the effects of param-

eter variations [70]. Their study was based on the idea

that without parameter variations, the Lyapunov function

. --
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is positive definite and its der ivative is negative

definite. Tnen, by introducing a parameter variation

term in the systems dynamics, it is be possible that the

derivative of the Lyapunov function might not be nega-

tive definite for certain ranges of values of varia-

tions. The same concept was applied by Song and Speyer

i119,120] to a nonlinear (modifiable) estimation algo-

rithm.

Another aspect of this research ia* to investi-

gate the usefulness of Lyapunov stability theory for

linear, time-varying and certain classes of nonlinear

systems given these variations in parameters. Again,

this effort focuses on the identification of a valid

Lyapunov function. Once a Lyapunov function exists for

the cascaded system, can it be used to determine stabil-

ity characteristics of the system when the true system

D rameters deviate from tne assumed system parameters?

If the Lyapunov function for the cascaded system is not

valid when considering parameter variations, can another

Lyapunov function be derived which will better measure

the stability or performance of the system when parame-

ter variations exist?

Tnere are four main objectives of this disserta-

tion, wnizh relate to Lvaojnov theory. The first ociec-

tive is to determine if the combination of the separate



controller and observer Lyapunov functions represent a

valid Lyapunov function for the controller/observer cas-

caded system. The second objective is to derive a

Lyapunov function for the linear time-varying, cascaded

system for both the continuous-time and discrete-time

problems. The third objective is to apply Lyapunov

theory to the problem of system stability, given varia-

tions in the parameters of the system dynamics and meas-

urement device. The first step is to use the Lyapunov

function derived for the cascaded system. A Lyapunov

function is then derived where these parameter modelling

errors are emphasized in the models. The fourth objec-

tive is to apply these Lyapunov functions to specific

examples. Two of the examples involve parameter varia-

tion analysis for linear, time-invariant problems, where

eigenvalue analysis results are available. This is to

determine the vaidit of these Lvapunov functions. A

third examole is a linear, time-varying guidance prob-

lem. As previously stated, the time-varying problem

considered is a finite time problem. The Lyapunov func-

tions is used to provide a measure of performance of the

system. Although the dynamics, controller, and observer

are linear, the fact that the coefficient matrix in the

pseudo-linear measurement is a function of the nonlinear

measurements of zne states makes the whole loop non-

linear.
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1.1.3 Homing Missile Problem with Angle Only Measure-

ments

Application of optimal control theory and

optimal estimation theory to the homing missile guidance

problem have drawn much attention in recent years [131].

The most commonly used control theory is linear qua-

dratic Gaussian (LQG) theory because it is based on a

linear system model and provides a closed form solution.

One of the fundamental problems that has limited

the practicality of the LQG control law is the diffi-

culty in obtaining the accurate state information

required. The LQG guidance law is a function of

missile-to-target position, velocity, and target

acceleration. Most present day missiles can obtain a

measure of the missile's acceleration through on-board

accelerometers. In aidition, passive seekers are use,

to provide a measure of line-of-sight angle and rate.

It is obvious that the information required by the con-

trol law is not directly available and, therefore, must

be estimated.

The estimation algorithm used for this effort is

a psuedomeasurement observer (PMO) . This involves tak-

ing the nonlinear angle measurement model and transform-

ing it to a new measurement model which is linear in the

4%V -V
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states of the system (103]. This algorithm is presented

in detail in Section V.

One of the most difficult and critical problems

in the observer design is how to model the target

acceleration. The target acceleration cannot be meas-

ured directly, and directly effects the rest of the

states. Therefore, variations in the target accelera-

tion model parameters will be investigated.

1.2 Missile Observer Performance Improvements Throuch

Optimal Feedback Control

Most guidance and estimation schemes are derived

separately and are combined through the separation prin-

ciple. The guidance law which has received considerable

attention is the one derived from linear quadratic Gaus-

sian ,LQo) 1e oV. It is a useful zneory zocause

provides a linear, closed-form solution; and at the same

time, has demonstrated the potential for significant

missile guidance improvements [1091. The cuidance law

is designed under the assumption that the missile-to-

target position, velocity, acceleration, and time-to-go

are available and known accurately. With the exceDtion

of the missile's acceleration, this information is not

available on board a honing missile. To provide the LG

guidance law with an estimate of tnese values,

,-- ,-... . .. .. .. - , - **..
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estimation algorithms developed from Kalman filter

theory have been extensively investigated [63, 109].

For missile systems with passive (angle-only)

seekers on board, the estimation algorithms have not

been very successful in accurately estimating the state

information [131]; however, the guidance laws have still

been successful in producing small terminal miss dis-

tances. The guidance law could produce even smaller

terminal miss if the state information were more accu-

rately known.

The intent of this part of the research is to

design a LQG guidance law that not only tries to minim-

ize the final miss distance (which it does now) , but

also to improve the performance of the estimation algo-

rithm. Improving tne estimators performance is done by

incorooratino a te: T in the Derformanze incex whi:h

attempts to maximize the observability Grammian matrix

of the estimation algorithm.

This approach is similiar to the efforts of

Hull, Speyer, Tseng, and Larson [63], in which they

developed a guidance law using the LQG performance index

which included a term that would maximize the informa-

tion matrix. The guidance law could not be solved in

close: formi, requiring the use of a numerical coptimiza-

tion program. The results, however, did show that the

~ ~ ' ~ ' - ~%' ~j'% % ~ .*~ ~ ~ %
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guidance law could improve the filter algorithm's per-

formance while attempting to hit the target.

The observability term in the performance index

for this effort is based on the Lyapunov functions

derived for the linear, time-varying problem. The

results of this effort differ from Hull, Speyer, Tseng,

and Larson in that a closed form solution is attainable.

1.3 Synopsis

In Section II, the two Lyapunov stability

methods are presented in detail. Next, the Lyapunov

functions for the separate linear time-varying con-

troller and observer (estimation algorithm) are dis-

cussed. Tnese two separate Lyapunov functions are then

combined to deterTine if they represent a valid Lvanunov

function for tne cascade5 system. This is done for ooth

the continuous-time case and the discrete-time case.

The disrete- time case is addressed since toe majority

of future guidance and estimation algorithms will exist

on digital computers.

In Section III, a Lyapunov function is derived

for tne cascaded system, assuming the control law is a

linear function of toe estimated states. Tnis is accom-

plished by setting the Lyapunov function equal to the

4. C
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average value of the performance index. The Lyapunov

function will be validated through the Lyapunov stabil-

ity conditions stated in Section 11. Again, this is

done for both the continuous-time and discrete-time

problem.

In Section IV, a Lyapunov function is derived

for the cascaded system, taking into account parameter

variations. The first step is to identify these parame-

ter uncertainties, anJ to incorporate them into the

linear, time-varying system model. The derivation is

the same as in Section III, which is done by equating

the Lyapunov function to the optimal return function.

Tne validation process is also the same as in Section

IiI.

In Section V, the LQG zuidance law is derived to

.-nitize final miss -s: ance :niroe tne estimation

algoritnm performance. The estination algorithm used is

the nseudomeasurement observer.

In Section VI, several applications of these

Lyapunov functions are studied by numerical analysis and

simulations. Given two linear, time-invariant examples,

the three Lyapunov functions are used to determine

acceptable ranges of parameter uncertainties in order to

maintain system staoil ity. Variations. in tne control

matrix are considered. The results are compared to an

1W Wr irF C w .. 6~ , ~-



eigenvalue analysis of the same system with oarameter

variaticns to determine the accuracy of the Lyapunov

functions to predict the boundaries of stability. Tie

first example is the scalar cascaded system by Speyer

[1221 and the second example is a multivariable cascaded

system of Doyle and Stein [41].

The next step is to demonstrate the effective-

ness of the Lyapunov function fo: a linear, time-varying

system. The first example is a linear quadratic Gaus-

sian guidance problem, where the control law is time

varying (a function of time-to-go). The Lyapunov func-

tions are used to analyze system performance given

errors in time-to-go and errors in the modelled system

dynamic matrix. In the second example,a homing missile

guidance system is formed using a pseudomeasurement

observer , with angle-only measuremn-ts, to estimate tne

states for the control law. Tne Lapunov functions are "

used to analyze system performance due to errors in tar-

get acceleration moO'elling.

Finally, the usefulness of the LQG guidance law

derived to minimize miss distance as well as maximize

the observability Grammian matrix of the pseudomeasure-

ment observer is demonstratedf. Tne results are compared 4%

to a similar effort by Hull, Spever, Tseng, and Larson

S 3'
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In Section VII, some of the important results

are summarized and conclusions are drawn from these

results. Finally, suggestion for future research are

discussed.

1.4 Summary of Results

The analytic derivations of the Lyapunov func-

tions in this dissertation are based on a cascaded
p

controller/filter system. The numerical results are

generated based on the assumption that the measurements

were noiseless, and the filter works as a observer.

The Lyapunov function which consists of adding

tne controller Lvaounov function by Anderson ann '.oore

to the observer Lvaounov function by Song and Speyer

' ,r.. is: not valid for all controller/observer sys-

, :n conro--r .. e rIrornanc e inx

scaled such that the combined Lyapunov functions are

valid without affecting the control gain. Further, this

Lyapunov function is used as a means of improving the

stability of the controller/observer system through an

overall design selection of the controller and observer

design parameters.

Since the comnin d Lyapunov function is not

valid for all controlle !r/oserver systems, a Lyapunov

~ *\*~ %~*~**~*
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function is derived for this system. The result is a

Lyapunov function which consists of the separate con-

troller and observer Lyapunov functions and an addi-

tional term which is a coupling of the system states and

the observer errors. This Lyapunov function is valid

for all controller/observer systems. However, this

Lyapunov function is very sensitive to system parameter

variations.

A Lyapinov function is derived to directly

account for system parameter variations. This Lyapunov

function is very accurate in identifying system stabil-

ity of the linear, time-invariant system under parameter

variations when compared to eigenvalue analysis. This

Lyapunov function is also useful in providing a measure

of system performance for the linear, time-varying,

finite-time problem and the homing missile guidance

zr 031en.

The cont. ol law which is designed for the mis-

sile guidance problem to minimize terminal miss as well

as improve the performance of an observer in the loop

causes the missile to maneuver in such a way as to

increase the observability Grammian matrix of the

ooserver and still hit the target. Tne results are very

close to those by Hull, Speyer, Tseng, and La'rson 'i53'.

The Lvaounov function from Section III, wnizn is usej as

V 5.W -

w * VAA ,~ *- ~ '. ~ . .' % % . >~ . . - '. -n&.. *
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IL

the basis for the derivation of this guidance law, shows

an improvement in performance over the linear quadratic

Gaussian guidance law. The main contribution is that a

closed-loop solution of the control law is obtained.

I

P6

PCW



SECTION II

LYAPUNOV FUNCTION FROM SEPARATE CONTROLLER

AND FILTER LYAPUNOV FUNCTIONS

2.1 Introduction

Lyapunov functions have been used for the linear

(;aadratic Gaussian control feedback problems, as well as

linear observer problems in order to determine their

convergence properties. For the controller, it is as-

sumed that all of the system states are available,

without inaccuracies. To satisfy the Lyapunov criteria

for staoility, the Lyapunov function for the controller

is selected as a quadratic function of the true states

and tne controller Rizcati matrix f6]. Tne Lvaouno v

function for th- filter is selected as a quadratic func-

tion of the state estimation errors and the inverse of

the filter covariance [121]. This Lyapunov function is

also valid for the observer problem.

In a more realistic engagement environment, the

true states will not be available for the control law.

An observer will be needed (for the deterministic 2ase)

to provide estimates of the system states to the con-

troller. This results in a cascaded filter and con-
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troller in the feedback loop. This section considers

the combination of the separate controller and filter

Lyapunov functions for the cascaded, closed-loop system.

First, the basic Lyapunov stability methods will

be discussed. Next, the Lyapunov functions for the

separate controller and filter will be presented, along

with how they satisfy the Lyapunov stability theory.

These two separate Lyapunov functions will be combined

to determine if they represent a valid Lyapunov function

for the cascaded system. This is done for both the

continuous-time case and the discrete-time case.

2.2 Lyapunov Stability

Lyapunov stability (unlike eigenva-le analvsis)

provides a tool for analyzing the convergence properties

of linear time-varying systems, nonlinear systems, an'

stochastic systems [95,139]. This dissertation is lim-

ited to deterministic systems only. Stability in the

sense of Lyapunov can be stated as follows:

Consider the following deterministic system dif-

ferential equation

x(t) = f(x(t) ,t) , x(t O) = x0  (2.1)

70 - I
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where x(t) is the solution to equation (2.1) and is an

n-dimensional state vector, t is time, and f is a

bounded function over the time interval. Consider a

nominal solution, x n(t) , to equation (2.1). The nominal

solution is stable in the sense of Lyapunov [18,54,951

if to each 4>0 (no matter how small) , and given to,

there corresponds a 6(4,t ) such that

d[x(t) - Xn (t)] < (2.2)

implies that

d[x(t - Xn (t)J < * (2.3)

for all t > to, where d[.] is a distance measure (Figure

2.1). This is known as Lyapunov's first method, and

requires an explicit solution to the differential equa-

tiLon (2.1).

A more useful technique which does not require

the solution to the differential equation is Lvaounov's

second method. This is accomplished through the selec-

tion of a generalized scalar potential function, called
p

a Lyapunov function, V(x(t) ,t) The sufficient condi-

tions for stability in the sense of Lyapunov over the

state soace are as follows [18,95]:

i) V(O,t) =
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O nx t)

L -

Figure 2.1, Lyapunov Stability

ii) V(x,t) is continuous in both x and t for

all x 4 Rn, and the first partial derivatives in these

variables exist.

iii) There exist continuous nondecreasing scalar

valUed -unctions, c( an-,:' suc"I

P(I xl )>V(x,t)> (l xl j)>0 for xl I#0.

iv) V (x,t) < W(x) < 0 for some continuous,

nonpositive W(s), where

V(x't) U).' )V(x t) bVxt) + 5 (fi(xit) 6X (2.4)

where x i denotes tne components of the vector x. If in

addition, W(•) is continuous and negative definite or

1I
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V(x,t)$@ except at x=0, the solution is asymptotically

stable [5,38]. The nominal solution, xn (t) is said to

be asymptotically stable in the sense of Lyapunov if

every motion starting sufficiently near x(t) converges

to x(t) as t->oo.

Lyapunov functions are by no means unique, and

some functions can provide more meaningful stability

results than others [95]. For nonlinear systems, the

selection of a useful Lyapunov function is often diffi-

cult.

For the case where f(x(t) ,t) is linear and

time-invariant, equation (2.1) becomes

x(t) = Fx(t) , x(t) -x o  (2.5)

The stability of this system can be determined by

obtaining the eigenvalues of F [38,951 . The system

mode. of equation :2.5) is staole in the sense of

Lyapunov if and only if the eigenvalues of F have nonpo-

sitive real parts and, to any eigenvalie on the ima-

ginary axis with multiplicity k, there correspond

exactly k eigenjectors of F. The system model is asymp-

totically stable if the eigenvalues nave strictly nega-

tive real parts.

Another means of determining stability for the

time-invariant model is to choose a quaratic Lyapunov

function of the form
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V(x(t)) = x (t)Kx(t) (2.6)

where K is symmetric and positive definite [38,92,111) .

The derivative of V(x(t)) becomes

*T T
V~x(t)) =x (t)Kx(t) + x (t)Kx(t)

-T (t) IF TK + KF] x(t)

x -x(t)QX(t) (2.7)

Therefore,

Q + F TK + KF =0 (2.8)

is called the Lyapunov eciuation.

Choose :Q to be oositive semidefinite arid solve

eauaticri (2.8) for K. if K iS positive definite then

this becomnes a necessary and sufficient condition for

asymptotic stability of the system in equation (2.5)

[933.

For linear, time-varying systems, equation (2.1)

becomes

x(t) = F(t)x(t) , x(t0) X (2.9)k

Ei~ienvaiae analvsis mav not nrovide u~seful information;

however, Lyapunov's second method does apply. Again,
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choose the Lyapunov function as the following quadratic

form

V(x(t),t) = xT(t)K(t)x(t) (2.10)

where K(t) is still symmetric and positive definite, and

is determined by the following differential Lyapunov

equation

K(t) = -K(t)F(t) - F(t)TK(t) - Q(t) , K(tf) = Kf (2.11)

where Q(t)>0. For K(t) bounded and positive definite,

and V(x(t) ,t)<0 for x #0, the system in equation (2.9)

is asymptotically stable [96]

If it is desired to analyze the zero-inout sta-

bility of a nonlinear system model through the linear

techniques just described, the nonlinear system model

would have to be linearized about some operating point

(x (t)) via a Taylor series expansion, where all non-

linear terms are ignored [95,113]. The linearized ver-

sion of equation (2.1) is

6x (t) 6x f t.(t) (2.12)
x=x n I(xt

where 6x(t) = x(t) - xn(t) (a perturbation).

The linear stability techniques can be applied

A.A
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to the system model of equation (2.12); however, the

analysis is valid only in a small region about the

operating point, x n(t). If the linearized system (2.12)

is unstable, the nonlinear system (2.1) is also unstable

away from the equilibrium point. .

2.3 Linear Quadratic Controller

A linear quadratic controller is designed by

minimizing a quadratic performance index for linear sys-

tems. Through proper selection of the performance index

criteria, useful closed-form solutions of a control law

can be derived for linear systems [26]. The quadratic

performance index selected for this effort has a termi-

nal constraint on the systemn, as well as a weighted

integral of cuadratic terms in the system states and

co'.trol ,261.

2.3.1 Continuu.a, Time-Varvinz Lvaounov Function

Given the following linear quadratic optimiza-

tion problem

S~ S - lol-
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T GxF Fx F

tf T

+ f (x T(t)Q (t)x(t) +  u T(t)R (t)u t))dt (2.13)

subject to

x(t) = A(t)x(t) + B(t) u(t) , x(t) x0 (2.14)

where xF  is the value of x at the final time.

GF>, Q (t)>0, R(t)>0, and A(t) and B(t) are linear

time-varying matrices. The optimal control, u(t) , is a

linear function of the states as follows '11]

u t) L - (t ) x (t ) , t , 1= (2 .15 ),

where

L(t) R (t)BT(t)P(t) (2.16

anz

P(t)= -P(t)A(t) - AT(t)P(t)
T (

- L-(t R~tLv) -. ( ) ( .!
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which is the control Riccati matrix. Equation (2.17)
a,

can be rewritten as

P(t) = - P(t)T(t) - (t)P(t)

-LT(t)R(t)L(t) - Qt) (2.19) 0

where N

(t) = A(t) - B(t)L(t) (2.20)

The Lyapunov function that is typically used for this

control problem is 0

TV(x,t) = x (t)P(t)x(t) (2.21)

where P(t) comes from equation (2.19). If (A(t) ,B(t)l

_ a,

[25,34] , tnen P (t) is bounied and positive definirte.

This satisfies the sufficiency conditions for asvmntotic 

stability in the sense of Lyapunov [121] . Therefore,

equation (2.21) represents a good Lyapunov function for

the control problem.

Equation (2.21) can be derived by defining the

Lvapunov function to be ev: ,alent to the optimal return

function, J,' where

-W N



V(x,t) = Jo = mnt J (2.22
u ( t)

2.3.2 Discrete-Time Lyapunov Function

The linear quadratic optimization problem can be

solved for the discrete-time problem as follows:

TG N-i T TNGNXN + > XKQc XK K (2.23)

subject to

XK+l = AKXK + BKUK (2.24)

where GN\ , Q_ >0, RK>0, and the optimal control is

still a linear function of the states anj becomes L79)

UK = - LKXK ,K = 3,...,N '2.25)

wnere

K (RK + BKPK+IB K )  BKPK+Ak (2.26)

and

_T T

P KK K V F K C.,A PG. (

N"'1



Ak A k BkL k  (2.28)

By equating the discrete Lyapunov function to the

discrete optimal return function

VK = Jo = min IJ} (2.29)
UK

the Lyapunov function becomes

Vk T (230
k = XKPKXK (2.38)

where PK is symmetric, positive definite by assuming

(AK,BK) is controllable and (AK,Q1/ 2) is observable
cK

[25,84]. This satisfies the first three condit.ons for

- Lvaounov function. For the discrete-time problem, tne

fou~ h zon ition _- relaced by

= KI - VK< (2.31)

whs ecomes

T T
/XVK = -x K (LKRKLK + .)x (2.32)

' With Q. positive semiefinite and RK positive definite,

K 
a

-ne fourth condition is satisfied; therefore, equation

'2.3C' is cood LVap.unov f nction for the linear

uiscrete-time control problem.

.. . . .*w II - I
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2.4 Linear Filter

2.4.1 Continuous, Time-Varying Lyapunov Function

Consider the following model of a linear time-

varying filter [48) -

x(t) = A(t)R(t)

+ K (t) (y (t) - H (t) k(t)] R (to0) = o (2.33)i

where the dynamic system is

x(t) = A(t)x(t) + B(t)u(t) + t(t)wU(t)

U-(t) - N(0,Qo(t)6(t-t)) (2.34)

'y y(t) = H(t x (t) + (/( t) , ,

(/(t) - N(0,Ro(t)6(t-')) (2.35)

K(t) = P(t)HT(t)Rol(t) (2.36)
0

- To
5 = A(t)P(t) + P(t)A T(t)

K K t)R c( t) KT t) C o(t) (2. 37)

P~t ' 2.38)

~~~~~~~ )r o ~. ~~ 'S~ ~ . rv d. r r e~ r
p.e w.%Y
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where R(t) is the state estimate, y(t) is the measure-

ment, A(t) is the state dynamics matrix, H(t) is the

measurement matrix, K(t) is the Kalman gain, P(t) is the

error covariance, and (/(t) and u(t) are Gaussian white

noise models where R0 (t) and Q0 (t) are the measurement

and state power spectral densities, respectively [48].

The estimation error is given by the equation

e(t) = x(t) - (t) (2.39)

Differentiating this equation, using equation (2.33) and

(2.34), provides the following linear dynamic equation

for the estimation error

e(t) = (A(t) - K(t).(t))e(t) - K(t)(/(t) + r(t)uw(t)

44. e(tQ, = e_.9 (2.4,'.

Define the cost functional as

tf eT(t)Q (t)e(t)dt (2.41)

subject to equation (2.40) , where Qe(t) is the weighting

on the state error and will be defined later. By using

equation (2.22) , the Lyapunov function for the linear,

time-varvina filter nroblem becomes
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e~~t T et) (t) e t) (2.42)

where

I

(t) = - (t) A(t) - A T(t) f (t) - Q e t) (2.43)

t f) = Tf (2.44)

where

A(t) = A(t) - K(t)H(t) (2.45)

If Qe(t) is chosen as

4 t) = p (t)Q (t)p- (t) + i (t) R (t)H(t) (2.46)

then the following identity can be ma3e

= (t) (2.47)

which can be shown by inverting equation (2.37). There-

fore, the Lvapunov function for the observer becomes

V(e,t) = e (t)P- (t)e(t) (2.48)

which is what is most commonly used. Assuming

(A(t: ,H(t) is observable and (A(t) ,'(t)) is controli-

able [25,84, , tnen i7t) is pounded and oositive defin-te
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and equation (2.48) satisfies all four requirements of

Section 2.2 to be a valid Lyapunov function for the

linear, time-varying filter described in equations

(2.33)-(2.38)

The filter algorithm (equations 2.33 to 2.38)

can be converted to an observer by changing equation

(2.35) to

y(t) = H(t)x(t) (2.49)

The Lyapunov function (equation 2.48) remains the same

for the observer problem.

2.4.2 Discrete-Time Lyapunov Function

The algoritnms for the linear, discrete-:ime filter are

x K = KR + K K BUKK + K K+lK --Kl ]K+11  (2.50)

Xg A KXK + BKU K + wK. -/ N(O,QoK (2-51)
XKl K K K K K K K N(0o ) 2.51

YK H Kx K + /K V- (, K(2.52)

xK AKIXK- 1 + BKUK (2 .53)

': . ~ T - T,-

K =0 i + R c2.54)K KHK[HKPKHK r eK

J~ ~N ~ ~ N * P.P,
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T=T (PK = (I-KKHK)TK(I-KKHK) + KKRo KK (2.55)

- - TSAKlPKl K- + QOK (2.56)

where xK is the true state, RK is the state estimate, YKK

is the measurement, AK is the state dynamics matrix, BK

is the controller matrix, uK is the control law, KK is

the Kalman gain, PK is the covariance matrix, and

(K and uaK are Gaussian white noise models where

R and Q are measurement and state power spectral
K K

densities, respectively. By defining the cost func-

tional as

N-lT
j J ' Q eK (2.57)

and using equation 12.29) , the discrete-time Lyapunov

function becomes

VK eKPK e K (2.58)

where

K-I K K K eK (2.59)

AK (I - KKHK)AKl (2.60)
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---i -1 _---II
Qe K PK A K WVK + ATKP KA K A TP K (2.61)

YK CI-KK HK)Q"o K (I-K K HK) T

+ KKR0 K T(26)
K0K K (.2

where Q e is positive definite (Appendix A).

The Lyapunov function of eauation (2.58) satis-

fies all four requirements of Section 2.2 and is there-

fore valid.

As in Section 2.4.1, the discrete- time filter

algorithm (equations 2.50 to 2.56) can be converted to a

5iscrete-time observer algorithm by ignoring the noise

term in eauation (2.52) , such that the discrete measure-

menit becomes

K ~HxK (2 .63)

The TLyapunov function (equation 2.58) remains the same

for the discrete observer problem.
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2.5 Combining Controller & Filter Lyapunov Functions for
Cascaded Systems

2.5.1 Continuous, Time-Varying Combined Lyapunov Func-
tion

By including the filter in the feedback loop,

and by incorporating the state estimates in the control

law in the following way

u(t) = -L(t)R(t) (2.64)

the closed-loop system dynamics become

x(t) = (t)x(t) + B(t)L(t)e(t) (2.65)

e(t) =A (t)e(t) (2.66,

Proposition 2.1

V(x,e,t) satisfies the sufficiency conditions

for asymptotic staoility in the sense of Lyapunov for

the continuous, time-varying system described in equa-

tions (2.64)-(2.66) where

V(x,e,t) = IxT(t) T (t)] Lt) X1t) (2. 67)( t) e 1 P0 - 1 (t )

under t e assumptions that (A(t) B(t',) and (A(t) ,(t)

are controllable, and (A(t) Qc!2(t)) and (A(t) H(t)) are

S Wi~P\ ~ S*~ *

...... ....
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I

observable. The control a in, L(t) ,and th e K alm anr

gain, K(t) ,are chosen as the optimal values (equations

2.16 and 2.36) . Equation (2.67) comes f rom equations

(2.21) and (2.48) .

Proof:

By assuming (A(t) ,B(t) ) and (A(t) ,r(t) ) are con-

trollable, and (A (t), Q1 /2(tW and (A(t) ,H(t)) are
c

observable, P(t) and P-1 (t) are positive 5efinite and

bounded. Thus, equation (2.67) satisfies the first

three Lyapunov function requirements from Section 2.2.

To evaluate the fourth condition, equation (2.67) must

be differentiated.

*'~ T [P]t) 0 ()V(x,e,t) L [x t)e()31[et

+ [X )eT (t)] [P X (t)

0 1 le4.

T T W. 0 ()'x (t) e()(2.68)40t Pl1(t)]LW)

F'rom eauations Q2.19) , (2.43k, (2.65), an-4 (2. 66), the

der ivative of te L1yapunov function is

y'-e ,, ,, " "- % V
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V(x,e,t) = [x Tt) e T(t)] LT(t)R(t)L(t

LT(t)R(t)L(t) ([x(t)) (2.69)

-p (t)QoP -  (t)-HT (t)R O 1 (t)H(t)

or

V(x,e,t ) = Lx T(t) e Wt)I t)[x W (2. 70)

In order to satisfy the fourth requirement (i.e. V<0)

it is sufficient that Z(t) be negative semidefinite.

However, it is not analytically possible to show that

7(t) is negative semidefinite. Through the selection of

R(t) , Qc(t) , Roft) , and o0 (t) , it may be possible to

show numerically that ( is neaative semidefinite.

A way of ensuring that Z(t) is negative se-mide-

finite is to change G,, Q- and R by the following:

GF Qc

F= Qc c (2.71)

7 R R(2.72)

such that the performance index (equation 2.13) becomes

-G F Tc C R t
J =x--x F  + 0 [xT x + u" U dt (2.73)

~F



For this control problem, the control gain remains the

same for all positive values of c(, including ( 1.

This is so because the new Riccati matrix is a scaled

function of the original one (equation 2.17) (i.e.

P =gP) . The control gain is a multiple of RP whichnew new

equals RP. c can be selected so that Q(t) is negative

semidefinite. The controllability and observability

conditions insure that V(x,e,t)#0 except at x=0 [96];

thus, the system described in equations (2.64)-t2.66) is

asymptotically stable in the sense of Lyapunov, and the

function

V [x T e T  (2.74)

which consists of combining the separate controller and,

filter Lvapuno functions, could be a oo c Lvanunov K

function oy properly selecting c(, without cn ging the

controller or filter gains.

2.5.2 Discrete-Time Combined Lvapunov Function

For the controller/filter cascaded system, the closed-

loop system difference equations are

X K+ 1 =KXK + E2.75)
K K

W-, W, Ir I , . • - . - -. - . , , -... - - , "
iL ,i Am |P.. .
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e K+ = AKeK (2.76)

Proposition 2.2

VK (xK,eK,tK) satisfies the sufficiency condi-

tions for asymptotic stability in the sense of Lyapunov

for the discrete, time-varying system described in equa-

tions (2.75)-(2.76) where

V K(xKjeK~K T= 0[ (2. 77)

under the assumptions that (AK,BK) and (AK,rK) are con-

trollable, and (AK Q1/2) and (AK, HK) are observable., , cK*K ! L K  t Ke K K  +

The control gain, LK, and the Kalman gain, KK, are

chosen as the optimal values (equations 2.26 and 2.54).

:,roof:

Eouation (2.77) comes f ... . uations (2.3C) a n

(2.58). From the assumptions in Prooosition 2.2, PK and

p l are positive definite for all K =,1,...,N, and
K

bounded. Thus, the first three Lyapunov function

requirements are satisfied zy equation (2.77). Dif-

ferencing VK and VK+I

/VK = VK, -V (2.79)

K.



(xT T] [ XK] (2.79)
T [T LKRKLK-.QcK LKRKLK] ~

K K L TRL Q rj

or K= T LKRKLK _QK] (2.89)

where Q. is defined in equation (2.61). For AVK(8, it%

is sufficient that Kbe neoative sernidefinite. How-

ever, as in the continuous- time case, it is not possible

to show analytically that K is negative sernidefinite.

Through the selection of RK, Q. R0  and Q it is

K c K,0 r

KK

finite. Therefore, eation a2.t7) may rnot . or the ,est

choice for a Lyaounov function for the cascaed systemc.

nex: ' -i to ,to evao-no:

function for the cascaeq svste ith the tecniue ise-

to serive tne seoarate controller ar d filter Lyacuno o

functions. This is accom lished in the next section.

Neo-

: fuztios. his s acompishe inthe extsecton..
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SECTION III

LYAPUNOV FUNCTION DERIVATION FOR CASCADED

CONTROLLER/FILTER CLOSED-LOOP SYSTEM

3.1 Introduction

In the previous section, it is shown that the

Lyapunov function which consisted of the sum of the

separate controller and filter Lyapunov functions may

not be valid for the cascaded linear, time-varying,

zlosed-loop system. This is due to the fact that the

separate Lyapunov functions are derived assuming the

control law is a linear function of the true states;

vet, the actual control law is a funczion of the es-

timated states from the filter.

The puroose of this section is to der ive a

Lvaounov function for the cascaded system, assuming the

control law is a linear function of estimated states.

This is accomplished by setting the Lyapunov function

equal to a conditional form of the optimal return func-

tion associated with the linear-quadratic Gaussian prob-

lem. It is snown that this Lvapunov function contains

tne secarate controller Lvaoun3v function, the filter

Lvaouno- function, ano an additional quadratic term

AllU
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which reflects the error in the control law due to the

inaccuracy of the state estimate from the filter. The

Lyapunov function is derived for both the continuous-

time and discrete-time problem.

3.2 Continuous, Linear, Time-Varying Systems

3.2.1 Lyapunov Function Derivation

A Lyapunov function is derived for the continu-

ous, linear, time-varying closed-loop system by equating

it to a conditional form of the optimal return function.

Here, the unconditional cost function is

J min mm Jl (3.1)0 u,K "

,wne re is tne expec'tetiton oper a, o r u zs m~eoc~a

control, and K in the Kalman gain. The performance

index iS chosen as

'S

~tf
T t f TJ = X Gfxf + (X 0 (t)lQ (t) x(t)
Xf ff f e 0

+ e'(t)Q (t)e(t) + u ( t R(t)u(t) dt (3.2)

suiect to

t i
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x t) =[A( t) -B (t) L (t) Ix t) +B( t) L (t) e (t) +r (t)wL( t) (3.-3)

e ( t) =[A t) -K ( t) H (i) ) e (t) -K (t) ((t) +r (t)wL( t) (3.4)

where

u~t) = -L(t) [x(t) -e~t)) (3.6)

fI (t) ,(t , and ;5()are symmetric positive sem-

idefinite, and R (t) and RK(t) are symmetric positive

definite.

It must be noted that the Lyapunov functions are

derived using the noise properties of the system states

a nd measurements as design parameters, rather zhan

actual Dower soec-tral densities. For this reason, the

.,'aouno'v functionsc are valid o>for t.ie cl os edj- 1co L

system with an observer in the loop.

First, rewrite the performance index in terms of

x(t) and e(t) only and take the expectation.

*C- g : . t :: . < : p . < '*-' .w C C C P $C j C~~p A.C . . L% ' .. * L W% - ,
C- C C ~ C % .. ~ ~ C'
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T en ] 0 1 [f

E{J} = E{[xf e I e

tf L T (t)R(t)L(t)+Q (t)

+ 0 [xT ir
+~ ~ ~ ~~ -x~)e~ L(t)R(t)L(t)

-L T(t)R(t)L(t) X(t) dtl (3.7)

L (t) R(t) L (t)+Q e(t) e(t)

Carrying through the expectation, equation (3.7) necomes

E{Jj = trGf 0 JST f pf

r Tf (t)R(t)L(t) +Qc "t) LT~tRtLt

+ of tr [ T C -L (t)R(t)L(t)
-LT(t)R(t)L(t) L' (t) R (t) L(t) + e(t

r [x(t) S(t) dt (3.8)
LS T(t) P(t)J

where tr[-] denotes the trace and

X(t) = Ejx(t)xT (t)] , S(t) = E[x(t) eT (t)]

P(t) = E[e(t)e T(t)] (3.9)

Tne next stez is to augm en t the 6dynam ic con-

straint equations (3.3 and 3.4) to the performance
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index. To do this, these equations have to be

translated to dynamic constraints in X(t) , S(t) , and

P(t) . These constraints are derived in Appendix B and

can be written as

1 t (t) B(t)L(t) (t)
j s t) S (t (t) I XS(t) P t)

T PSTt P t) 0[T At (t) -
S~ *((t

+ (t) Q(t) 0

(t) K(t)R(t)KT (t) +-(t) ( 0

where

I

A(t) A(t) - B(t)L t) (3.111

A(t) = A(t) - K(t)H (t) (3.12

Using the following definitions

X )(t) [ t ), (3.13)
-- I S P ( t )

(t) B(t)L(t)
A (t) 0 (3.14)

A t),

~.%~4%. .E. ~ ~ r . c % \ ,%~.. - o >. "
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T T(t)R(t)L(t)+Q C(t) -L T 1tRtLt
-L ~T (t)R(t)L(t) L T (t)R(t)L(t)+Q e(t)J

Q (t) -(3.16)

- (t)K(t)R(t)KT(t+Ut)

the augmented performance index becomes

3' trG X~ + tftrQ(t)X^(t)

+tr A(t) [A (t) X(t) + X t(t) + Q (t) - X (t) Idt (3. 17)

where Act) is the Lagrange multiplier defined by the

following

-) (3.13)

The cost function canl be manipulated into the form r26]

tf
V1 = trX (te)A(t ) + 4 tr A(/\ t) Q(t))dft (3.19)0 to

-E '[x (t) eT t)W(t)[Xe(t.)11 + Ift tr (\(t) Q(t) ) dt(3 .20)

Tnie firsz term in equation (3.20) represents the Qeter-

ministic pert of the problem and is- an expected value of



a quadratic term in the states x and e. This term will

be called the Lyapunov function and is of the form

V(xet) = [xT(t) eT (t) (t) /\c(t) 3x t )  (3.21)

The Hamiltonian of the system is

H(t) = trQ(t)x (t)

+ tr A(t) [(t)X(t) + X(t)AT(t) + Q(t)] (3.22)

From the Euler-Lagrange equations,

= -H . = -A(t)A (t) - A(t)A(t) - Q(t) (3.23)
x

L

or

V P

-_ h
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5A B (t) L At)

At)/ Ct) 0t /\t) (t)TT(t) T(t) t (t) /(t)

pA

TL(t)+ (t) T/I t

T(t)R(t)L(t)+Q C(t) -L TR(t)L(t) (3.25)

-L T(t)R(t)L(t) LT(t) R (t) L (t)(+Q3.

L(tf) tf) J L 0 (3.26)

From equation (3.25)

/_ LT(t)R t)L t

- LT(Q)R(t)L(t) Q_(t) , /\x(tf)=3 f  (3.27)

(t)= /s(t)A (t) - -KT (t)/\,(t)

X- (t)B(t)L(t) + LT (t)R(t)L(t) , AS(tf)=0 (3.28)

/ x(t) is eauivalent to the controller Riccati matrix

wnich implies that the control gain L(t) is



KMm

52'

L(t) = R 1(t) B (t)/x(t) (3.29)

For /A.(tf) = 0, /\s(t) = 0 for 0 < t < tf. Therefore,

the Lyapunov function reduces to

V(xet) = [x T(t) eT (t) IL (y)t)[e(t) 03 )

where /'X(t) is defined by equation (3.27) and

- LT(t)R(t)L(t) - Qe(t) (3.31)

/\_ (tf) = 0 (3.32)

By defining

-p (t) + P'(t) (3.33)

equation '3.31) Can be split into two differential eoua-

tions

P (t) =-P-l1(t) A(t) - AT (t) p-I (t)

- p ,1 (3.34)
p -f



e -P " t) A-. AT() r

-LT (t) R(t)L (t) P e(tf) f (3 35f

The Lyapunov function becomes

V(x,e,t) = XT (t)/\(t) x(t)

+ eT (t)P- (t)e(t) + e T(t)pe(t)e(t) (3.36)

where the f ir st quadratic term is the controller

Lyapunov function, the second term is the filter

Lyapunov function, and the third term is an additional

term that reflects the error in the control law due to

tne inaccuracv of the state estimate from the

AS the error increases, this term has a stronger influ-

eneon ::"- Lv.anjnov fiction. Note tnat P(: equa-

tion 3.35) is affected by both the Kalman gain, K(t) , in

(t) , and the control law ga in, Lit). The next step is

to determine if equation (3.30) is a valid Lyapunov

function.

Z.- 
Vt



3.2.2 Lyapunov Function Validation

Prooosition 3.1

V(x,e,t) from equation (3.30) satisfies the suf-

ficiency conditions for asymptotic stability in the

sense of Lyapunov for the continuous, time-varying sys-

tem described in equations (2.64)-(2.66) under the

assumptions that (A(t) ,B(t)) and (A(t) ,'(t)) are con-

trollaole and (A(t) ,H(t)) and (A(t) ,Q'/ 2 (t)) are observ-

able (121]. The control gain, L(t) , and the Kalman

gain, K(t) , are chosen as their optimal values (equa-

tions 3.29 and 2.36).

Proof:

Bv assumina (A(t) ,B(t)) and (A(t) ,1(t)) are con-

trollable and (A(t) ,H(t)) anJ (A(t) 1/2 ( t)) are 

ooservable, /'X(t) , whiich is the control Riccati matrix,

and P Ct) , which is the observability Grammian matrix,

are positive definite for t>t and bounded. With P (t)

positive definite and Pe(t) positive semidefinite [25],

/\p(t) is positive definite from equation (3.33). This

imol ies

V(x,e,t) > 0 (3.3-)

for t4[0,tf) and al x(t) and e(t) not equal to zerc.

- ~ -- .S -~ - ) ..p.5 A.. ---- -~-



Therefore, the first three Lyapunov function require-

ments of Section 2.2 are satisfied. Trie derivative of

equation (3.30) is

T eT
V(x,e,t) [x (t) eT(t)-

Ct) T

, T(t) R (t) L(t)-Qc (t )  L T(t)R(t)L(t) t)LT(t)R(t)L(t) _LT(t) R(t) L (t)_Qe t) t)

- T T (t]Q t )~j(.8= x (t) eT(t)IQ (t) (3.38)

Rewriting Q' (t) as

I

Q'(t) [R(t) [L(t) -L(t)

L-L- (t)j

r-0 (t)(t) (3.39)

S.

it is obvious that for R(t)>O, the first quadratic

matrix in eouation (3.39) is nezative semidefini- , and

for Qc(t)> and Qe (t)>C, the second matrix in equation

(3.39) is negative semidefinite. In addition, the con-

trollability and observability conditions assure that

V(x,e,t)=0 only when x=0. Therefore, the derivative of

the Lyapunov function becomes

V(x,e,t) < 3 (3.40)



for x#0, which satisfies the fourth reauirement for a

Lyapunov function. The controllability and observabil-

ity conditions insure that V(x,e,t):@ except at x=0

[96]; thus, the system described in equations (2.64)-

(2.65) is asymptotically stable in the sense of

Lyapunov. Therefore, equation (3.30) represents a good

Lyapunov function for the cascaded, linear , time-

varying, closed-loop system. The same Lvaounov funtion

(equation 3.30) is derived using the Hamilton-Jacobi

equation (Appendix C).

It is important to note that for the linear

homogeneous system (equation 3.3) , the adjoint equation

propogates the solution of the original equation back-

ward in time [25]; thus, acting as a predictor of the

system. With the Lvapunov function defined as a condi-

tional form of the optimal return function (equation

3.3C) , the Lyapinov- matrix, defined by the backward Ric-

cati differential equation (3.25), has predictive auali-

ties for the value of the cost.

3.2.3 Extension to Nonlinear Systems

Based on the results by Song anz Speyer

[119,1201, this Lyapunov function can be extended to the

class of nonlinear systems where the system dynamics are

linear an- the filter measurement equations are

" I ' "N " , ' pU " 'Wj.\j ."WII-j -'P'%'- V. .. , '' .' " " ", " " ". ". /
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nonl inear functions of the states. The nonlinear meas-

urements can be transformed into a linear function of

the states where the coefficient matrix is a nonlinear

function of the ooservations. The pseudomeasurement

observer (PMO) and the modified gain extended Kalman

observer (MGEKO) are based on this concept. The algo-

rithm for the PMO is presented in detail in Section

6.4.1.

Tne Lyapunov function (equation 3.36) is changed

by replacing Pe (t) with the inverse of the observability

Grammian of the PMO (Section 6.4.1) The observability

Grammian matrix of the PMO is positive definite for t>t 0

[103]. The Lyapunov functions derived in this disserta-

tion are valid for this class of nonlinear systems.

3.3 Discrete-Time Linear System

3.3.1 Lvapunov F'unction Derivation

A Lyapunov function is derived for the

discrete-time, linear closed-loop system by equating it

to a conditional form of the optimal return function.

Here, the unconditional cost function is

3 (3.41)

, N,

2.. ..



where Ei is the exoectation operator, u is the

optimal control, and K is the Kalman gain. Tne oerfor-

mance index is chosen as

j x T G X

K2 K c K K -K e K  K K K (3.42)

subject to

-

T A B L x + B T + 1 (3.43)

K+I K K K eK K K K 3K.2
K KK

X~~l ,,K -BLK , BKLeK- KK (,43

.. ( .- ) 3 .46,

N CK Kare sYmmetric p osiive semi d efinite ,

a n K a n K are svmmezr c oslive a .n.te. Rewrting

the oerformance index in terms of xK and e K and taking

the exDectation gives

ac %

.,7.

... . . ...... J'ili mll i ai'lil i H / :'" . . ..
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T +I 0
E XN Ir I IeAX1

TT
N-I LKRKLK +Q c T I x+ [xT eT] K -KKLK (3.47)

T T KIK K
K=_ LTRLL+ RL L 4R L +Q K-

K K K eK

Carrying through the expectation, equation (3.47)

becomes

~'NI

= tr 0 [X T  P. I

GN N)[

TD
N-1I KR K+cK -LKRKLK 3

+ K t -RKLK KRKK 1 (3.48)
N-i L K K~R~ K K Ki

S~

wr, e r e

X =L rx x, = 'x PK
K = EKXK ' K = KK' K = CKKI (3.49"

To augment the dynamic constraint ecaations to

the performance index, equations (3.43) and (3.44) have

to be translated to difference equations in

X., S and PK" These difference eauations are derivec .
r\, r\,

In- i oDencix B. The result is

A.

-* ' 
= ,

" ',' ' ' ' .p ','. p" .','' .,' S'" - " -. I . ', " . ' 'M L
-

- 'S'. .. ,."i",, - . J*
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+l SK+l BKLK] XK SK]

K~j K~lA KJISK PK[ K BK A]T

IK

+ ~K QKj (3. 50)

where 
V

AK = AK - BKLK (3.51)

A A -K H A -
K K K+l K+1K (3.52)

The augmented performance index is

N-I ^ .

J' = tr GNXN + tr Q X KSK = O

~TA+ tr /XK + [AKXKAK+QK-XK+ ] (3.53)

where

X = (3.54)T P

A K LK1 (3.55)
A K

A K _] " -

p.



TL R L + D K  -LKTRKLK

QK = [ LTRKLK+Q1 (3.56)

-KRK QK]

T, A1

QKj= T+J (3.58)

LK KKKK JI

and /\ K is the Lagrange multiplier. The cost function

can be manipulated into the form [26)

^' N-i ,"

J' trXo/\t + 5 tr/\ Qi

i=l

i =l

where VK(XK,eK,tK) is chosen to be a Lyapunov function

of the form

VK(xK, eKf tK) e ] T eK K 1

Tne discrete Hamiltonian of the svstem :s

K =tr KXK tr [AXK Q (3.61) %

K K -' "
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From the Euler-Lagrange equations

T+ QK , ', - N (3.62)
xo K

or

l K T K 0 K+l K+1 [K KLA-TA - T / T-

ST K K K K+l PK+l KJ

TF

[L KR KL K+Q C -L T+Qg]

+ T K T KKK(3. 63)
KKRKK e

' AS N "(3.64)

cr K N-I,... E.1

Fzom the difference eauation for /,K

TXK\ T! + L+RKLK + QK ' = N (3.65)

KK+l N

it is obvious that is ecual to the controller Ric-,

cati matrix, which implies tnat the 5iscrete control

gain, LK is
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L -1 Tr K K B K+ B fK KX KI K (3.66)

From equation (3.62), the difference equation for / is
K

SK+T T
As KAS TK K BKLK - LKRKLK , / = 0 (3.67)SK "+ K+

With L defined in eauation (3.66) and 0
K /\SN

= 0 , K = N,... , (3.68)

Substituting equation (3.68) into (3.63) , the difference

equation for A, is

S= / AK + L (BT/\ B +R )L/ K K K K
KK+l K X K

+ =0 (3.69

By defining

/"P pK+ p e (3.70)/K eK

equation (3.69) can be split into two difference equa-

tions

K K- K+ K e ' PN N

K
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-Tp +A T TTK K p LK (S/1 '  BK+R-K)L p =_ 1 (3.72)PAP KX K K)K 'e N "

The Lyapunov function becomes

i K( K  K K )  [ T  T ]  K [XK
V (x ,eKt = T (3.73)

K KrK' K K e K ">P K][eK]

or

T T--l TV K = x K~ PK e +eKI eeK (3.74)

~-1
where p and P are defined by equations (3.65),

(3.71) , and (3.72) , respectively. The first quadratic

term is the discrete controller Lyapunov function, the

second term is the discrete observer Lvapunov function,

and the third term is an additional term that, like in

Z ofnUS.-t~~.r .e=flects te . ..or in tne con-

trol law due to the inaccuracy of the state estimate

from the filter. Note that P (ecuation 3.72) iseK

affected by both the Kalman gain, KK, in A and the

control law gain, LK. The question arises as to whether

equation (3.74) is a valid Lyapunov function for the

linear, discrete-time, closed-loop system.

N!
%.
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3.3.2 Lyapunov Function Validation

Proposition 3.2

VK(xK,eK,tK) from equation (3.73) satisfies the

sufficiency conditions for asymptotic stability in the

sense of Lyapunov for the discrete, time-varying system

described in equations (2.76)-(2.77) under the assump-

tions that (AK,BK) and (AKrK) are controllable and

(AKH) and (A K Q/) are observable. The control gain,

LK, and the Kalman gain, KK , are chos2rn as the optimal

values (equations 2.26 and 2.54).

Proof:

By assuming (AK,BK) and (AK,K) are controllable

and '" H ) and (K-QA/ 2  are observable, /, which is

the con.zrol Riccati matrix (eq3ation .=65, a P - 1

which is the observability Grammian matrix (equation

3.71), are positive definite for K>C and bounded. With

P K positive definite and P positive semidefinite

(25], Ap is positive definite from equation (3.70).
K

This implies

VK(XK,eKtK) > 0 (3.75

for tK =N,...,l and all xK and eK not eaual to zero.

jr. W- W
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Therefore, the f ir st three Lyapunov function require-

ments of Section 2.2 are satisfied. Looking at the fol-

lowing difference equation

IL vK1 v K (3.76)

[XT e T L~K K K C K -LR K L K J K]

xT eT IQ(3.77)
-~ [xKeKIK]

Rewriting Q K as

Q [L ~LK + [QK ej (3.78)

it isobviz-,s that for R K >0, the first qua4.ratic matrix

in (3. 78) is negative serioef inite , an j for

Q>0 and Q_ >0, the second matrix in (3.78) is negative

semidef inite . In addition, the controllability and

observability conditions assure that /,V K= 0 only when

x = 0. Therefore,

K&

AVK(x eK t ) < 0 ,K = ,..l(3.79)

for x K ;, w - izh satisfies the fourtri r~ooiremenz ofa

ZLaounov function. The controllatnilitv an j

.- K VK~~ ~ ~~ ~~~~~~~ % y ~ , ~ .. ~ K* , . ~ KK ~ ~ * ~ ~
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observability conditions insure that AVK xK,eK,tK) 0

except at xK=0 ; thus, the system described by equations

(2.76)-(2.77) is asymptotically stable in the sense of

Lyapunov [121]. Therefore, equation (3.73) represents a

good Lyapunov function for the discrete, cascaded,

linear, closed-loop system.

V

N.

p.

JJ

p 3-, ~p
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SECTION IV

LYAPUNOV STABILITY FOR PARAMETER VARIATIONS

4.1 Introduction

The design of both control laws and observers is

dependent, to some degree, on the knowledge of the true

systems dynamics and measurement parameters. In most

cases, they are both designed with the assumption that

the dynamic and measurement parameters are known

exactly. In most real-world problems, this assumption

is not always valid and could cause some stability prob-

lems if the narameter .7ariations are significant. In

some cases the parameter uncertainties can be modelled

as ransom ".'a.riaoles or constants, and incorporated into

the estimation algorithm. The parameter uncertainties

become additional state variables to be estimated by the

filter, but this increases the computational load on the

algorithm [66].

For linear, time-invariant systems, eigenvalue

analysis is very useful for identifying acceptable

bounds of parameter variations under which the system

I|



69

remains stable 11221. The purpose of this section is to

develop the means of analyzing the stability of time-

varying systems through the use of Lyapunov's second

method. The first step is to expand the Lyapunov func-

tions derived in Section III, to account for parameter

variations. Then, as in Section III, a Lyapunov func-
I

tion is derived to account for parameter variations in

the dynamic and measurement models.

I

The first step in this section is to identify

these parameter uncertainties and incorporate them into

the linear, time-varying, cascaded closed-loop system

model. Then, as before, the linear-quadratic-Gaussian

optimization problem is solved, subject to these new

f ynamic constraint equations. From this optimization

problem, a new Lyapunov function is derived which con-

si~ceron .. tne dyna c and neasur-ment oe,

This derivation is done for both the continuous-time and

discrete-time systems.

4.2 Continuous, Linear, Time-Varving Systems

4.2.1 Extension of Lvapunov Function From Section 3.2.1

I

The Lvaounov function for the continuous,

linear , time-varying system without parameter uncertain-



ties is rewritten as

V(t) =  [x T(t) e T(t)] 0 )[(t ) ] (4.1

where

(t) - T

- LT (t)R(t)L(t) - Q (t) (4.2)

/\,X tf) = Gf (4.3)

t)t) = - ( t) - AT ti t)

- T(t)R(t)L(t) - Qjt) (4.4)

/ ( ) = (4.5)

an6 the close6-loop system dynamics are

x(t) = (A(t)-B(t)Lc (t))x(t) + B(t)Lc (t)e(t) (4.6)

F-
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y(t) = H(t) x(t) - M(t)L c(t) (t) (4.8)

where A, B, H, and M are the unknown true system parame-

ters, and A B H M K and L are tne designed
C, C, C, C, C, C

(or nominal) system parameters. Define the modelling

errors (or deviations from the nominal) as

A -A c(4.9)

5C

Z -B - B (4.10)

,L4 H - Hc  (4.11)

M - M (4.12)

T e svtem tynamics can be rewritten to emphasize t.e

modelling errors in the following way

x(t) = (A t) - B_(t)L_(t) + DAB(t))x(t)

+ (B,(t)L_.(t) + DB(t))e t) (4.13)

where

DAB(t) = (At) - A (t)) - (B~t) - B_(t))L_(t) (4.14)

DB t, 
= (B t, S_ t) ' t) < . 5.

B.
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The estimation error, defined as

et) = x(t) - R(t) (4.16)

has the following dynamics

o p.
°

e(t) = D(t)x t) + (A(t)-Kc(t)H (t) + DBM(t))e(t) '4.17)

where

SD(t) = (A(t)-A.,(t)) -K (t (4)-c)

- (t) -B ( )L t) + K_ t) (M (t) -M_ (t))L_ t) (4.18)

DB M t) = (S t) -B_ (t))L_(t) -K_ (t) (M t) -N_ t) L c(t) (4.19) i

, Therefore, the closed6-loop system i
.4w

Therfore the kls lopsst i

.~~~~~ ) -_ t AB '

e t)] D (t)

C C B rx t)1
(A,(t)-K (t)H (t)+DBM (t) le t)J (4.20)

Equations (4.2) and (4.4) can be rewritten as

r._



q.'

-T 0

+ A t)l[0 I

L 0(t) ( t )  ( t) I

t)A(t)  t)

-Lt R (t) t
tRt) L )+ ) -LT(t)R(t)L(t) (4.21)LLT I -

-LT (t)R(t)L(t) LT(t) R(t) L(t)+Qe (t)

S

Incorooratina the effects of the modelling errors into

this equation results in

E(A't) B' t)..+ /t)(t) (t) B "+ L
00~t A'+0t)

F-?T tZ:l[\T t) 0.. z 'J

-L~z(R~R (t tRJ(t)Lt

[ DDI/( 7(t) D/ ) D422 t
P B p BM" B. , P

(4'.

" .' .>'p

[P 'P .f '

-'p.. - *. . . .. -p
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B' (t) = B_(t)L c(t) + DB(t) (4.24)

Cf

A' (t) = A_(t) - K_(t)H_ (t) + DBM(t) (4.25)

This has not altered the solution to ,AX(t) and /\p(t)

which implies that V(x(t) ,e(t) ,t) is still positive

definite. However, the sufficient condition for V to be

negative semidefinite is that the right side of equation

(4.22) be negative definite for x(t)=0. i.e.

Tn

T()R (t)L (t)+Qc (t) -LT(t)R(t)L (t)

-L T (t)R(t)L (t) LT(t)R(t)L,(t)+Q (t)
C C e

TTD B 'X (t )  /\X (t) DB+DT/\ (t)
+r T /< 0 (4.26)

t r ) D+DL5/"(t ,At(t)DBM+DB/M (t)

This ineaualitv constraint becomes the sufficient condi-

'n fo tne closez-" stet, t st ' tSe

sense of Lyapunov. It is :ossibe that for certain

ranaes of Darameter uncertaintvy the inequality con-

straint (eauation 4.26) could be violated.

4.2.2 Lvanunov Function Derivation

The continuous, linear, time-varving closed-loop

~-- r t -vaics with r=araMeter u-rertainties are

Vi
-N. _!
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(A, = -B t)L t)+D t)x t) Dct k

(B ( t) L c( t)+D B( t)) lx (t) (4.27)
(A t) -K t) Hc t) +DBM (t)) e (t) I

For the linear, time-invariant system, it is easy to see

how the uncertainty parameters (D,DBM DAB, and DB) can

affect the stability of the system. Without these

parameters, the stability of the system is characterized

by the eigenvalues of the controller and the observer,

designed separately [122]. This can be used tc deter-

mine acceotable bounds of parameter variations, under

which the system remains stable. It is desirable to

provide the same kind of stability analysis, given

parameter variations, for linear, time-varying systems.

This is accomolished throuoh the following derivation of

L.'a uo: fun~iron :.:- :=o73nts fo .0 a ratosi

parameters. Using the same optimization tecrnique set

in in tne previous section, the oerformance index is

chosen as

. . ..Y- - ii -.d , - i . .-- - - - -- -
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J x ~G x~

+ 0jf x TtQC t)x(t) + eT t)et)et)

+ UT (t) R(t) u (t) I dt (4 .28)

subject to

x (t) =A' (t) x( t) + B' (t) e(t) + F(t) Lu(t) (4 .29)

e (t) D D(t) x t) + A '(t) e (t) - K ( t) ((t) + r (t) u( t) (4 .30)

where

LW t) N N(101 t) (t-

t) - t) [x t) e et, (4.32)

Rewr iting the performance index i 1, Lerms of x (t) and

e(t) and carrying through the expectation, eauatlion

(4.28) becomes



E{J} I tr f

T T

t) (t) R (t) L (t) +Q (t).

+tR 0 t) -LT(t) R(t)L (t)C C

rT) LS t) S(t) dt (4.33)LTC(t) R(t)L c ( t) +Qe (t) LsXT((t) P (t),,

wn e r e .

X(t) =Ex(t)xT (t)], S(t) = EWx(tleCt)]

* TP(t) = E[e(t)e (t)] (4.34)

Usin the sane technique in Appendix B, the differential

4 ecu tions for X(t , S(t) , and P(t) are

t) (t) B' (t) F(t)
D t)

(t ) Ls

+ X(t) S(t) T(t) D T(t)

+ ( )t) A4t5
+_:( t (4.35)
t K (t)R(t) KT (t)

Followino the same steps in Section 3.2.1, cost function
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can be rewritten as

tf'
S E[V(x,e,t)] + trQdt (4.36)

where V is a Lyapunov function of the form

V (x (t) e t) t) [xT(t) eT  t) t t (4.37T)x t
(At) /pt et

where

/Ax(t) /\S (t) (Xt) /\'s(t) k'(t) BI (t)"

t) (t) t) (t) [D (t) A' (t)

_ ,z r (t )  (t) tS :
'T (t ) A 'T (t ) / (t ) Ap t )

LT~t) (t) L ( + t -L T(t) R(t)L () "

t) C /)t,

- T

L_) LT t)R(t)L )t)

C ' "t~t T IC

[x(t f) AS = jf (4.38)

With parameter uncertainties in the Lyapunov

function, ,A,\ (t) is no longer equivalent to the con-

troller Riccati matrix whizh implies
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V

S(t) n R- (t)BT(t)/\x(t) (4.39)c c

In addition, A 5 (t) is not equal to zero even with AS(tf )

equal to zero. Therefore, the Lyapunov function (equa-

tion 4.38) cannot be simplified.

4.2.3 Lyapunov Function Validation I

Proposition 4.1

V(x,e,t) from equation (4.37) satisfies the four

sufficiency conditions for asymptotic stability in the

sense of Lyapunov for the continuous, time-varying sys-

tem described in equations (2.64)-(2.66) when subjected

to system parameter uncertainties of the form described

in equations (4.14) , (4.15), (4.1S) , and 4.19) under

the assuotion S that ( (t)B t)) and (A .t)( ..) are

z -n a um tions . .. . (: a 7 t '2

ooservable 12 . Thus, V(x,e,t) is positive definite

and bounded, i.e. ,

0 < V(x(t) ,e(t) ,t) < ( xl , e ) (4.40) Ile.

I

wriere ".



T TT

V (x (t) ,e(t),t) = xT(t) eT(t)] [ (t,tf) f (t,tf

fG fsf
+ , t (tIt) Q ( ) (t,'It)dt

Gf = 0 P[Of I
T(t)R(t)L t)+ t) -Lt)R(t)L(t) t)Q(t)= T T Q (4.41)

-LT~t)R~t)Lc(t) s (t) R (t) L_ (t) +Qe =

and (t 0 ,) represents the state transition matrix for

the system defined in equation (4.27) and B is a con-

tinuous nondecreasing scalar valued function.

Proof:

For R(t)>O, Q (t>O, and Q (tV0, then <'0 as

shown in eaua:ion (3.39). Tnis assures that eauation

(4.41) is nonnegative definite for t>t [251. In order

tnat V(x,e,t) satisfies tne sufficiency conditions for -

asymptotic stability in the sense of Lyapunov, the ine-

quality constraint (equation 4.40) must be satisfied.

With equation (4.40) , the first three requirements for

the Lvaounov function are satisfied. Taking the deriva-

tive of equation (4.37)

N-,
'p.'
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Tp
T T LTc(t) R(t)L c (t)-Q c (t)

V(x(t) ,e(t) ,t) = ixT(t) e (t)j T c

LT (t) R t)L,(t

T "

Lc (t) R (t) Lc (t)t)

T t (4.42)
-L (t) R (t) L (t) -Q (t):c C e

I

This is similiar to equation (3.38) and is negative F

definite for x(t)#0 and given any uncertainty of the

form described in equations (4.14) , (4.15) , (4.18) , and
I

(4.19). For equation (4.37) to be a valid Lyapunov

function for all x(t) and e(t) , equation (4.40) must be

satisfied.

4.3 Discrete-Time Linear Systems

4.3.1 Extension of Lvapunov Function From Section 3.3.1

The Lv-o no v function for the 5is.rete-tir.e,

linear system without parameter uncertainties is rewrit-

ten here as

v= T KX '
VK [x T TI K1[r] (4.43)K 0

where

A -: x AK + TRL  + 4 4KK K K c+ Q N
K K+1 ~K N
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T TT
/K = AKP K+ 1 AK + LK BK/\ BK+RK)LK

+ CeK / =P 0 (4.45)

The discrete-time, linear closed-loop system

dynamics are

XK+ 1 = (AK-BKLcK) K + BKL eK  (4.46)

K+ (AK B)XK L K R K

K K

XK^ = ( -BKL )X
K -K -K K

T. 
+ K P_ H [+P+M X (4.47)

YK HKXK - MKL K K4.48

K = (A, - B, ',, )xK4. 9"

-K "K K

K = PHHPH + -R i  (4.50)!
C K 'K "K ccK 'K K

wnere AK  BK  H and MK are the unknown true system

Parameters, and A B_ H Mc  K and L_ are the
C C ."K, 'K, K, K, K, _K

designed (or nominal) system parameters. The discrete

modelling errors (or de;iations from the nominal' are

defined as

. . .. . . .. .

'A~ ~~~~~~~~~e *, 'f'"eU. .\ *-. *.-~~1 , *" '"" , ~ >~''~~ '
5



K = AK - A (4. 51)

B K = BK - B (4.52)

H H (4.53)

M =M -M (4.54)MK=K K

The system dynamic can be rewritten to emphasize

the modelling error in the following way

X (ABK- B KK+DAB )xK + (B L +DB eK 455c K c 'K c K K K CKK K

where

D --

K =K K K

B (BK - Bc )Lc (4.57)
K K -K

The discrete estimation error, defined as

e K = x - xK (4.58) .

has the following dynamics

e KXK + (A, -K, H A +D e  (4.59)

K 'K+ K+K 1 K K

A .. , 'I '5~ wA



where

DK = (AK cA, ) - (BK Bc )L
KK "K

- Kc (HK+l I c  )AK + KCK (MK+l M, )L AK (4.60)
K+l -K+l K+-Ml K+

D BM (BKB )LcK - KK (M -M )L AK  (4.61)K + KI1 K+I1

Therefore, the discrete closed-loop system is

XK+I]FeK+J
(A -B L+D) (B L +Dc K C K c K ABK K c K + B K ) XK (

-K (A_, -K., H, A +DBM eK

;. ~ E u a n. . "I' z4 ' n.= b4 e) ra e w r Jrit en asC

<r K K4-1 K BKL

K KRL+c ALRL K4 K3

/I T T
- L.K K LRLK+4.63)

Incorporating the effects of the modelling errors into

eauation (4.63), tne result is

-Ir V



K D KI][ "Ylj[K AK

[LKRKL\K KI K Kc

[ 0\ L [LR +Q -T R eK

K KjKK K c K CK K +Q

AL T KR L LDTRK +

Ki '+1rK
. K' MJ K K K

a, ~,T D T

+ B th][o K BJ .

As in the continuous-time case, this does not

lter the solution to , an n , whizch imlies that V.,

is st l: ': oositi:e definite for anv oara*=rneer variations. '.

-~ the sufficient condition for _K to oe neqative

semidefinite is'I
.4
D

-I

.4%

.4%

.4%

J a!

.................. V.*.:. W/k-- -A--X ~ *. a. % VV - -a -a-.
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LT R.L - T R KLCK , C KcK -cKKc KIT T

-L TR L LTRL+
cKRK cK  c KKCK+QeK

D T D T KIB K /% K+ 0 AK' BK

KK] /DK ][K AK
B DKBM K ,

D0 D

+ K DT K Tl[0 K]AB K BK < 0 (4.65)
LKK K ' BM

This inequality constraint becomes the suffi-

cient condition for the discrete closed-loop system to

be stable in the sense of Lyapunov. For certain ranges

of parameter uncertainties, it is possible that this

i-nezali-v consi-aint 2ould be violate.

1 L.ac ry.o .,Function Deri.-ation

Tne c4iscrete-ime, linear closed- iooo svstem T

dynamics with parameter uncertainties are

-v
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[xK+ 1  = ( K BK -K ABK

K+ DK

(B _, L +D B

A -K H A +D (4.66)

KK+1 c K+1 cK BM K

A means of analyzing the stability of linear,

discrete-time systems subject to parameter variations in

develooed in this section. This is accomplished through

the following derivation of a Lyapunov function which

accounts for variations in parameters. The discrete LQG

performance index is chosen as

I N

T 
T

x _ x K + : e + UKRU K  (4.67)
NC, K eK' e ~K K K K0= K

subject to

X ~ =AK IK X+B I e + KN(4.68)K K
K+ K K XK + K K K

eK+l = DKXK + AK'eK K+l K+l + -KuK (4.69)

where

N (1K N (4.70)

*1rK ( ' K
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A ' = A_ - BK LK + DAB K  (4.71)

BK ' = BL CK + DK 4.72)

AK' A - K HDBM K  (4.73)

uK= -L0 CXK - eK) (4.74)

Rewriting the discrete performance index in terms of xK

and eK, and carrying through the expectation gives

E{J} = tr 0 PN
0 S 1T NP.4

LN N

L T R LT R
tr K K K KK K K (4.75

K=O LL -. %L - K 1

where

T = r[ T TXK EK XKK] PK E[eKeK] (4.76)

Using the same technique in Appendix B, the difference

equations for XKSK, and PI are

K , - ..

% : topV 4~ % %, 4 ~- ~ %
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XK+ S i- K B Ix K K1AKI D K
x~ K-i-iD A KI ST P IK A'

IS KI ~ K K KL K]

KT (4.77)

QK KCK+IR K+K c K+I

Followinq the same steps in Section 3.3.2, the cost

function can be rewritten as

N-1
J' = E[VK] + tr/"\Q i  (4.78)

where VK is the discrete Lyapunov function of the form

V(r T = K K xl (4.79) !

Ks

VK(XK'eK'tK) :xr xTK /:[p eK

I-.

.'.

.5,

"-.-

'I
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,1- /X T,1 , T Ax]B
K-KTKRK K  LKRKLcK+lK

p sK+l K+1 ~ K

T T KAL R L, Q -L R L
+ C K K -K CK C K K cK

[ KL K c LKKLKc Ke K]

[/\ I~N i = N rN 01

T[A ~ 0N [ 0e (4.80)

As noted in Section 4.2.2, /X is no longer
K

equivalent to the controller Riccati matrix with parame-

ter uncertainties present which implies

T  )-4T /(4.81)
'KK K KKl~K

in addition, 1S 0 C for K = N-l,...,C, even with
K

= . Therefore the Lvaounov function cannot be sim-
N

plified.

4A

4.3.3 Lvapunov Function Validation

Proposition 4.2

VK (XK,K,tK) trom equation (4.79) satisfies the

" "*- - ; '4 " ' "- . 4' ,V." ' r" ' -V V .%)t ai V .. ~. .I . " .' "w . " ",v'" ", ".,
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sufficiency conditions for asymptotic stability in the

sense of Lyapunov for the discrete, time-varying system

described in equations (2.75)-(2.76) when subjected to

system parameter uncertainties of the form described in

equations (4.56) , (4.57) , (4.60) , and (4.61) under the

assumptions that (AK,BK) and (AKrK) are controllable

and (AKHK and K 1/2 are observable. Thus,
CK

VK(XK'eKrtK) is positive definite and bounded, i.e.,

0 <V K-[xTK e K ] T A eK < PK(I " eX~ ,eKl I) (4.82)

K IK

and LVK#0 except at x K=O [96], where PK is a nondecreas-

ing scalar valued function.

Proof:

For :KR, >0, >0, and Q_ >0, tnen >, nere 

L T R-+Q- -L T-
c K c K CK K K (4.83)Q = R RKL c  L R.L +Q e
K K CK K KJ

For QK> and GNO , then for K>O. For eauation
>O.

(4.79) to satisfy the sufficiency conditions for asvmp- '

totic stability in the sense of L\aDunov, 2m'2-t be

positive definite for KF> and a-1 nonzero x and eK and

bounded from above. The first three requirements for a
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Lyapunov function are satisfied if equation (4.82) is

valic. The difference equation of VK is

LVK = K+1 - VK

TT eTT  K K K K K
[XK K T TR T K c eKK K (4.84)

T T K cK -L R K ]

This is similiar to equation (3.76) , and is negative

definite for x K 0 and for any uncertainty of the form

described in equations (4.56) , (4.57), (4.60) , and

(4.61), since equation (3.76) is independant of the

variations. For equation (4.79) to be a valid Lyapunov

function for all x-. and eK, equation (4.82) must be

satisfied.

4.4 Practicajitv 3f -nis Derived Lvaounov Function

Section 4.2.3 and 4.3.3 have provided suffi-

ciency conditions under wh ich equations (4.37) and

(4.79) are valid Lyapunov functions. Considering the

discrete-time case only, equation (4.80) is a backward

difference equation of the form

A< KX+1K 'K (4.85)
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All =  GN  (4.86)

where K=N-I,...,0. AK represents a state transition

matrix. In addition, QK is positive semidefinite from

equation (3.78). Stability in the sense of Lyapunov is

only applicable to an infinite time problem. For the

finite-time problem, the Lyapunov function does not pro-

vide a measure of stability; however, by investigating

the time response of the Lyapunov equation, a measure of

system performance can be obtained. In particular, the

Lyapunov equation becomes unbounded from above when the

system performs poorly.

With GN>0 and QK> 0  /,K will always be at least

Dositive semidefinite. Variations in the systems param-

eters will not cause V to become nonpositive definite,
K

nor will it cause 1_VK to become nonnegative semidefin-

ite. However, these ;ariations can cause to become

unbounded from above.

When the variations in system parameters become

large enough to cause the system to diverge (or perform

poorly) , the solution to the Lyapunov equation goes to

infinity (becomes unbounded from above) . This charac-

teristic of the Lyapunov equation is useful in providing

a measure of system performance for the linear, time-

varying, finite-time problem.

%* '' ' ',' ' "' % . -. . .."( ",,"., - %. %' V %,,-. -VV,.-,v ." "%. 'v ... . . ... . ..- • ... . . .
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For the linear, time-invariant problem, it is

possible to analyze the steady-state value of the

Lyapunov function. In steady-state, equation (4.85)

becomes

A = A'Sf SS + QSS (4.87)

where ss represents steady-state values. It is now

possible that, for certain regions of parameter varia-

tions, A may not be positive definite.

I.

.1
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SECTION V

MISSILE OBSERVER PERFORMANCE IMPROVEMENTS

THROUGH OPTIMAL FEEDBACK CONTROL

5.1 Introduction

The application of Linear Quadratic Gaussian

(LQG) optimal control theory to the tactical missile

guidance problem has drawn much attention in recent

years. It has been demonstrated that for short ranqe

tactical missiles, the LQG guidance law provides signi-

ficant oerformance improvements over the more commonly

usn-- c1as!.4-ca. prooortional navigation pro-nay gui-
I

dance laws [109] .

A cr:'-a issue that affects the performance of

the LQG guidance law is the fact that it is a function

of missile-to-target position, velocity, and accelera-

tion, and time-to-go. Time-to-go is usually approximat-

ed as a function of the position, velocity, and ac-

celeration. A more detailed discussion is presented in

Section VI. In the derivation of the guidance law it is

assumed that thiC informztion is accurate and Lvailable

on Doari the missile. Most present day missiles can ob-

tain a measure of the missile's acceleration through

F ef. f~. ~ - ~ .. . . . . . . . . . . ~
61N ."~
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I

on-board accelerometers. In addition, passive seekers e

are used to provide a measure of line-of-sight angle and

rate.

Extended Kalman filters have been used to esti-

mate the needed guidance information from the informa-

tion available on board the missile with very good
I

results in terms of minimizing miss distance at final

time [109]. However, in many instances, the estimates

from the filters have not been very good, partially be-

cause it is impossible to accurately model the target

acceleration. Although not the subject of this disser-

tation, much work has been accomplished toward improving

target acceleration modelling.

In addition, certain missile/target enaaaements

reduce -he observability of the filter states; thus, de-
0

aradinz the Derformance of the filter, and in turL1, the

aui3ance law. T-_ empohasis in this section is to irr-

prove tne state estimates through the guidance law. Zs

in the previous sections, an observer will be used in-

stead of a filter algorithm.

The task is to incorporate an additional term in

the LQG performance index, which is developed to minim-
't

ize final Pi4ss distance while minimizing control effort.

This new term is included to maximize the observability

Grammian matrix of the observer, i.e.,the measure of the

uncertainty of the state estimates. Tnis new term will

-0-e_



require the guidance law to minimize the error vari3nce

matrix of the observer. This is similar to the efforts

by Hull, Speyer, Tseng, and Larson [63,123] , in which

they developed a guidance law using the LQG performance

index wnich included a term that would maximize the in-

formation matrix. This guidance law could not be solved

in closed form requiring the use of a numerical optimi-

zation program. The results, however, did show that the

guidance law could improve the filter algorithm' s per-

formance while attempting to hit the target.

The impetus for this work comes from the

Lvapunov stability analysis of the pseudomeasurement ob-

server (PMO) in Section II. By taking advantage of the

PMO's algorithm, a closed form solution is obtainable.

5.2 Missile Model

The state dynamics model used for the develp -

ment of both the missile's gidance law is linear and

the estimation algorithm is nonlinear and they are set

up in rectangular coordinates as follows:

.N.

x = Ax + Bu (5.1)

wh e r e



V)

[A = 0 I (5.2)

-1 -~ (5. 3)

and x consists of the three components of missile-to-

target position, velocity, and target acceleration in

inertial coordinates.

The line-of-sight angles, measured from a pas-

sive seeker, are azimuth, (C) , and elevation, (6),

angles. The relationship between these angles and the

observer's states is illustrated in Figure 5.1.

II

1%-

Figure 5.1, Angular Measurements Related to Observer States

Tne nonlinear functions relatinc the ancles to the

states in a rectanoular coordinate frame are

U. . U.. . . .
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tan- (5.4)

G tan f ](5. 5)
1 2 T+

where X, Y, and Z are the three components of relative

position in inertial coordinates.

For the PMO, the measurement model is rewritten

as [119,120]

y = H(z)x (5.6)

where

sn COSE) 0 000000 (719(Z) (5 7z sincosG sindsinG cose 0 0 0 0 0 5

5.OnCpt ization Proolem

...

Consider the following performance index S

J =- (U Ru- x Qx)dt (5.8) .20

subject to

.

Dxf = 0 (5.9)

x = Ax + Bu , x() = (5.10)

$/ '- -'<4- 4 4 < ".. ,< .'.< ,..--,-.,.- .<_.-_.-,, ..,-.-, < ,. ..,.-, -,_-._ , .-.,-,-. - -. - -.. .. -, .-. --, I-
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where tf is given, R is positive definite, and Q is

positive semidefinite. This performance criteria is

chosen to require the control law to drive the system to

a zero terminal miss while minimizing the control

effort. In addition, there is the term (x TQx) which is

maximized over time. This term is constructed to maxim-

ize some measure of the observability Grammian matrix of

the observer; thus, minimizing the error variance matrix

of the observer. The differential equation for the

observability Grammian matrix for the PMO is

PT +PT -
P - AP - PA + PHT(z)V H(z)P - W = 0 (5.11)

where V is the power spectral density of the measure-

ments and W is the power spectral density of the

observer states. Taking the inverse of the observabil-

itv Grammian matrix, the differential equation oecomes

+ P-i A + ATV- _ H T (z)V-IH 1. P 1 WP-1 = 0 (5.12)

The results of the Lyapunov stability analysis

of Section II showed that by decreasing V (or increasing
V , the inverse observability Grammian matrix (P-l

would increase. Therefore, the performance index should

include a term to maximize HT(z)V- H(z) , where H(z) is

defined in equation (5.7) . The measurement power soec-

tral density is assumed to be

%.4
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V =C( (5. 13)

where and c is some positive constant representative of

the accuracy of the infrared passive seeker.

Define the second term in equation (5.8) as

x TQx = tr {R2 HT (X)V-I1H (x) }(5.14)

where R is range and H(X) comes from substituting the

following identities from Figure (5.1) into equation

(5.7)

Ysine = (5. 15)
X2 +

Cose = X (5.16)
X 2 + v 2

sin2 - - (5.17)

coso +x (5.18)

Note that

I N
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tr {R2 H T(x)V- H(x)} = tr R 2V- H(x)H T (x) I

-tr [1 0 = tr (x T2 x)

= Xx (5.19)

With equation (5.14) , the following definition of Q can

be made

12 0 0 01

The solution to this optimization problem is [38]Ti
u = -R-BT(S-GQ- S)x (5.21)

where

-SA - A S + SBR-B S + Q , S(tf)=0 (5.22)

m - 1 T T (
= -(A - SBR B )G G(tf) = (5.23

Q = G BR-BTG Q(tf) 0 (5.24)

5.4 Design Considerations

To ensure that no co.jugate Doints exist,
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(S - GQ- G T ) must be finite for t 0 < t < tf. This also

satisfies the same Riccati equation as S (equation

5.22). With Q positive semidefinite, it is possible for

S to blow up if integrated over a long period of time.

This may or may not cause (S - GQ-IGT) to blow up [26].

This potential problem puts some restrictions on the

final time boundary condition, tf, S is a backward Ric-

cati differential equation and it is important that the

critical time, t, (where the conjugate point occurs)

does not fall between the integration period [tf t).

In the homing missile problem, initial time, t0

is known but final time, tf, is not known. A restric-

tion on tf such that no conjugate point occurs is

tf - t > tf - t0  =t (5.25)

Dr

tf > t- + t- (5.26)

where t is time-to-Qo. The conjugate point is avoided
g

through the selection of the guidance parameter, c. A

smaller value of c will lesson the rate of change of S,

such that a larger interval of [tf t ) will not contain

a conjugate point. A smaller value of c implies the

measurement Jevize is more accurate. It also reduces

the emphasis for -:he ouidance law to improve the

T W .s MW
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observer's performance. This is a design parameter

which may differ from missile system to missile system.

" "I

I.i
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SECTION VI

APPLICATIONS

6.1 Introduction

The purpose of this section is to demonstrate

the usefulness of the Lyapunov functions derived in Sec-

tions II, III, and IV to measure the stability charac-

teristics (or performance for time-varying systems) of

various closed-loop systems given state modelling er-

rors. Several simple problems are used to obtain in-

sight as to how useful the Lyapunov functions are. The

analysis is broken up into the following classes of

problems: Linear, Time-Invariant Scalar Proolem;

Linear, Tie-Inyariant Multivariabie Control Proolem;

Linear, Tire-Varyinz Guidance Problem; anj the Homing

Missile Guidance Problem with Angle-Only Measurements.

In addition, the performance of the LQG guidance law

developed to improve the observer's state estimation

process as well as minimize miss distance is analyzed.

The linear, time-invar iant, scalar problem

selected comes from a study by Speyer [122], in which he

was able to identify acceptable ranges for state model-

ling errors ( eqns. 4.9-4.12) where in the closed-loop

system would remain stable. He accomplished this by
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rewriting the system equations to emphasize the model-

ling errors ( Section 4.2.1 ). The acceptable ranges

were identified using eigenvalue analysis under steady-

state conditions. Since eigenvalue analysis represents

both a necessary and sufficient condition for the sta-

bility of a linear, time-invariant system, a comparison

provides the basis for determining how accurate the

Lyapunov functions are at determining stabiiity.

The linear, time-invariant multivariable control

problem comes from the work by Doyle and Stein [41],

where the closed-loop system is marginally robust. By

changing the power spectral density of the state equa-

tions for the estimation algorithm, they were able to

improve the robustness characteristics of the closed-

loop system. This would allow the system to remain

stable for larger ranges of the state equation modelling

errors. As in the scalar problem, an eiienva!ue

analysis is performed for the various power spectral

densities that Doyle and Stein selected to provide a

basis for the Lyapunov function analysis under steady-

state conditions. This analysis is performed for a

range of state equation modelling errors. In addition,

simulation results are obtained to demonstrate the

time-varying traits of the closed-loop system.

The impetus for the linear, :ime-varying gui-

dance work comes from the homing missile guidance prob-

V|
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lem, which can use the LQG guidance algorithm. The LQG

guidance law is a function of missile-to-target posi-

tion, velocity, and target acceleration, as well as

time-to-go. Even for missile systems with the most ad-

vanced measuring devices, this information is not readi-

ly available, and must be estimated. To do this effec-

tively, the estimation scheme must have an accurate

model of the missile/target dynamics. The most diffi-

cult information to model is time-to-intercept ( or

time-to-go ) and the target's acceleration. The purpose

of this effort is to determine if Lyapunov functions can

be used to determine acceotable ranges of time-to-go and

target acceleration modelling errors under which the

closed-loop homing missile guidance system performs

w .... Since this is a time-varying problem, it is not

possible to look at steady-state conditions; and there-

fore, eienraje analysis cannot be use3 as a basis for

validity. The estimation algorithm used for this study

is a linear Kalman observer.

The next example is the homing missile guidance

problem with a passive ( angle only measuring ) seeker.

These types of seekers are common for tactical air-to-

air and air-to-surface missiles. The LQG guidance algo-

rithm presents a difficult problem for the estimation

algorithm, which Js needed to estimate missile-to-target

position, velocity, and acceleration. For missile sys-

, " .
. . .U. V , ,r .- .. . . . .. . .. -



188

tems with passive ( angle only ) seekers on board, the

estimation algorithm has not been very successful in ac-

curately estimating the state information [127];

although, the guidance law has still been successful.

The guidance law could be much more successful if the

state inrormation were more accurately known. The pur-

pose of the homing missile guidance effort is to deter-

mine if Lyapunov functions can be used to identify ac-

ceptable ranges of target acceleration modelling errors

under which the system performs well.

The difference between this analysis and the

linear time-varying guidance problem .s that the angle

only measurements are nonlinear functions of the system

states, and therefore, the estimation algorithm is non-

linear. The estimation algorithm selected for this part

of the study is the pseudomeasurement observer (PMO).

This algoritnm was selected because "-t exnil:is lobal

convergent characteristics [119,120] unlike the more

typically used extended Kalman observer (EKO).

The last applications problem is to evaluate the

performance of the LQG guidance algorithm developed to

improve the estimation algorithm's ability to estimate

the state information, as well as minimize the final

miss distance ( hit the target ) . The guidance law is

designed under the assumption that the missile-to-target

position, velocity, and acceleration are available and
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known perfectly. With the exception of the missile's

acceleration, this information is not available on-board

a homing missile with angle-only measurements. The gui-

dance law developed in Section V is demonstrated in a

missile/target two-degree-of-freedom simulation using

the PMO estimation algorithm. The engagement selected

for evaluation is the same as that done by Hull, Speyer,

Tseng, and Larson [63] so that a comparison can be made.

The performance of this system is compared to that of

the standard linear quadratic Gaussian (LQG) guidance

law by using the Lyapunov function from Section III.

The parameter uncertainty analysis is conducted

in Section 6.2. The analysis is conducted for the

linear, time-invariant scalar problem ( Section 6.2.1

the linea, time-invaria=nt multivarijable control problem

( Section 6.2.2 ) , the linear, time-varying guidance

problem ( Section . 3 , the noming missile g;idance

problem with angle only measurements ( Section 6.4 ) ,

and the homing missile observer performance improvements

through the LQG guidance algorithm ( Section 6.4.3 )

ft..



6.2 Parameter Uncertainty Analysis

6.2.1 Linear, Time-invariant Scalar Problem

The linear, time-invariant problem is as follows

[122]

•6
x = ax + bu + / (6.1)

y = hx + mu + w (6.2)

E[V(t) V(t)] = q_6(t - -t) (6.3)

E [u ( t) u(=) ] = r6(t - t) (6.4)

(/(t) (_C = 0 (6.5S

u = -i c (t) (6.6)

x = (a -b_ 1 + k (t)[y-h k+m 1 c] (6.7)

C~PC.( t)
1 c (t) b r  (6.8)

PO t) h c (6.9)
o
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p (t) 2-2a D t) + r 1 (t) - g (6.10)
C CIc C C

P0  t) = 2a-P o(t) - r k (t) + q (6.11)
0c0

where a, b, h, and m are the unknown true system parame-

ters, and a ,b ,h c , mc , k_, 1_ are the designed ( or

nominal ) system parameters. Pc is the control Riccati

term and p is the observer covariance term.

Following th e same procedure as in Section

4.2.1, the closed-loop system dynamics can be rewritten

to emphasize the modelling errors in the following way.

d(t) (a-kc (t)hc+dbm (t) ) e (6.12) ,"J.

wh-ere dab~t) b f mt) , d(t) , and 'm (t) are Aefinec n

equations (4.14), (4.15), (4.18), and (4.19), respec-

t iv el. ConS der Inc; ot~v~~ 0n7, ct

can be set to zero in equations (6.10) and (5.11) suc. I

that .

I.

r2
PC c 2a c  (6.13)

,,%.2a

r0 k 
2 oc - o

= 2a (6.14)

0|

-, .es
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6.2.1.2 Steady-State Eigenvalue and Lyapunov Function

Analysis

The purpose of this effort is to determine

acceptable ranges of modelling errors in a, o, h, and m

(i.e. _.a, -_Ab, and Lm which are defined in equations

(4.9) to (4.12)) for which the system (equation 6.12)

remains stable. One way is to look at the eigenvalues

of the system matrix, a, for various modelling errors

where

S(ac-bc c +d ab) (bc 1 c+d b) 1

d (ac-k hc+db]6

Note that if there were no modelling errors, the stabil-

ity of the closed loop system ( equation 6.12 ) is

determined by the eigenvalues of the closed loop system

M t rix (a -b 1 and tne observer S"IStem matix

searateIv 12 2 Tne modellinz errors were

varied independently, until the real parts of the eigen-

values of a in eauation (6.15) became positive. Tnis

would identify a bound (or range of values) for which

the system would remain stable.

This same approach is applied to the Lyapunov

functions derived in Sections III and IV. The Lyapunov

function in Section !II, which is the Lyapunov function

for the continuous, linear , time-varying system without

parameter uncer tainties is presented in equations



,

(4.1)-(4.5). When parameter uncertainties are intro- -

duced in the system model, the Lyapunov function remains

positive definite. However, the sufficient condition

for V to be negative semidefinite is provided in the

inequality constraint of equation (4.22). Considering

the steady-state scalar problem, the equation becomes
p

r 2d+0 -rb12 c do +d bc4
-r - , cri 0] + [o 2da ip < 0 (6.16)

'rl2 r- qdp d bP, 2d bmPoJ

For the system to remain stable in the sense of

Lyapunov, the eigenvalues of the left side of equation

(6.16) must be negative.

For the Lyapunov function derived witr. parameter

uncertainties (eqn. (4.38)), the conditions for stabil-' 4

ity are different then equation (6.16) . For tn4is

Lyaounov function, V is negative semidefinite for any

uncertaintv. However, the sufficient condition for V to

be positive definite is provided in the inequality con- I

straint of equation (4.40). Considering the steady-

state scalar problem, the equation oecomes

(6.18)

-wh e re

:A

4

(6. 18) .

[~\~ /y 1 .
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r (ac-bC 1 +d ab) (b cc +d
d (a c-kc h c+M)

(a cb c1 c + ab) d T

[ (blcc+db) T (ac kchC+d bm ) T /

I I
r 2l r1 .

+ c c = 0 (6.19)12 r 1 2 +qo

0 c C

which is an algebraic Lyapunov equation. For the system

to remain stable in the sense of Lyapunov, the eigen-

values of the left side of equation (6.18) must be

positive.

For the eigenvalue analysis and the two Lyapunov

functions, the system parameters were chosen as [122]

r = , a = 1 (6.20)

For all three cases, the system modelling errors

L _a, /\b, Li, and /n) were varied independently until. the

stability conditions were violated. The results are

shown in Table 6.1. By comparing the results of the

Lyapunov equations to the eigenvalue analysis (which is

known to be val id: , a measure of the effectiveness of

each Lyapunov function to identify regions of stability
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S\'st:-r Lv~pri , TP'r:ct ii-rn T ',t:' rct~ c:

Matrix w/,o Parareter w/ Parameter
7icenvwl:es Uncertaintips '7ncertainties

A>-. 3 -. 2<Ab<.2 "b>-.3

__7 < 7 . 2 <,,<. 25. < 2

I.

TABLE 6.1 Acceptable Ranges of Parameter Uncertaintes
for Scalar Probe

can be obtained. Note that the Lyapunov function

derived without parameter uncertainties has both upper

and lower bounds on the acceptable ranges of parameter

uncertainties. This is oecause of tne quadratic nature

of the inequality constraint (equation 6.16). The

bounds tended to be a little tighter then that of the

system eigenvalue analysis. The bounds on the Lyapunov

function derived with parameter uncertainties are

equivalent to those of the system eigenvalue analysis.

These bounds are very similiar to those found by Speyer

(1221.

The Lyapunov function from Section 1, which

consisted of combining the separate controller and

'S
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observer Lyapunov functions, is also evaluated under

parameter variations, and was found to be an invalid

Lyapunov function given the system parameters in equa-

tion (6.20), even without any parameter variations. In

Section II, it was pointed out that this particular

function ( equation (2.67) ) can not be analytically

shown to be a valid Lyapunov function for the closed-

loop system with an observer in the loop. The numerical

results have reinforced these analytic statements and

have demonstrated that equation (2.67) is not a valid

Lyapunov function for all choices of system parameters.

6.2.2 Linear, Time-Invariant Multivariable Control Prob-

lem

The linear, time-invariant, multivar iable con-

trol oroblem w.s selected from an exanple by Doyle= ano

Stein r41] and is as follows

[§] 0 ~ 1jj] + [0])u + [ V (6. 21)

y =[2 1]1x + w(6.22)
T (

E[V( t) ¢/ ( ) (t - r)(6.23)
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E[w(t)wuT(T)] = 6(t - t) (6.24)
4'

E[V (t)uT (-c)] = 0 (6.25)

u - [50 10] (6.26)

;. - (A-BL)R + K[y-HR] (6.27)

[2J

-PA - A P + L R ,L + (6.28)

P = AP + P A - KRo K + Qo (6.29)

K P HTR-1 (6.30)

wn er e

R = 1 (6.31

r2800 4 73 .2 91 (6. 32)
[473.29 80

R = 1 (6.33)

1.22 5 -2135] (0 0]
o -2135 + 7 20 (6. 34)

Tnis system represents a weakly stable system,

L
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where weakly implies the system has poor phase margin

[41]. Doyle and Stein set out to increase the stability

( or robustness ) of the system by adding a constant

fictitious term, q, to the process noise covariance .

matrix, Q 0 By using Nyquist diagrams, Doyle and Stein

were able to come up with a reasonable compromise ,

between noise performance and robustness by increasing

q2 [41]. By increasing q 2, the error covariance

increases and the closed loop stability margins improve.

6.2.2.1 Steady-State Eigenvalue and Lyapunov Function

Analysis

As in the scalar case in Section 6.2.1.2,

steady-state analysis is applied to the closed loop sys-

tem and the two Lyapunov functions. For this example, a

var iation in the con-rol matrix, B, is investiate6

i .e. - ) Acceptable ranges of _ variations were gen-

erated for q set to 0, 100, 1000, and 10000, which were

the same values selected by Doyle and Stein.

For the eigenvalue analysis, the closed loop

system matrix is

-4

A--B-L-+DAB BcL +D 1
D A c-c cB (6.35)

L D cc c BJ

where DAB, DB, and D come from equations (4.14), (4.15),
ABer,
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and (4.18), respectively. The inequality constraint

that validates the Lyapunov function derived without

parameter variations is equation (4.26) and the inequal-

ity constraint that validates the Lyapunov function

derived with parameter variations is equation (4.40).

The results are shown in Table 6.2.

v S t e.Y7, Lyapunov Function Lyapun:v Function
:4a~trix w/o Parameter ; P'wame-_ r

Ei izenva.!es Uncert-ainties Uncertai-t-es

0 LB>-.2 -.0025<,"3<.0025 2

100 A/?>-.25 -. 0045<AS<.0045 \B>-.25 '

10 C "--> -. -. 0155 <,'< .0 17 > E

10000 _ 7 -1.05 -.0285<AB<. 0275 /,._p >-! .C5

TXZLE 6.2 Acce-zab!e Iranges of Parameter Uncertainties,
Or MuIivaralIe Pro'-ile7.

The Lyapunov function derived without parameter

uncertainties has both upper and lower bounds on AB, as

in the scalar case. These bounds are much narrower than

in the scalar problem. The bounds on _AB produced by the

Lyapunov function which includes parameter uncertainties

are identical to those of the system eigenvalue

analysis. As in the paper by Doyle and Stein [41], the

a. ~ ~ g rV~f.4
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system stability margins increased as q2 is increased in

both Lyapunov function analysis. The Lyapunov function,

which consisted of combining the separate controller and

observer Lyapunov functions, was also evaluated under

variations of LB, and was found to be an invalid

Lyapunov function given the system parameters defined in

the paper [41].

6.2.2.2 Performance Analysis Through the Lyapunov Equa-

tion

In the previous section the Lyapunov function

derived with parameter uncertainties is very accurate in

identifying acceptable ranges of LB variations for sys-

tem stability through steady-state analysis. In this

section, the actual time response of the Lyapunov equa-

tion (4.801 for the Lvaounov function derived with

parameter uncertainties is investigated.

Figures 6.1 to 6.4 snow the minimum eigenvalue

of the Lyapunov equation for q2 =0, 100, 1000, and 10000.

For each value of q 2 , several values of are con-

sidered. The figures do not show anv significant

changes to the minimum eigenvalues. The figures do show

that the solution to the Lyapunov equation is positive

definite for K>0.
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Figures 6.5 to 6.8 show the maximum eigenvalue

of the Lyapunov equation for the same values of q 2 and

^,B. When .,B exceeds the acceptable ranges identified in

the previous section, the maximum eigenvalue becomes

unbounded with very large negative slopes. With the

system going unstable and the states diverging, the

Lyapunov equation becomes unbounded from above. Since

the steady-state analysis is meaningless for the time-

varying problem, this type of analysis is more appropri-

ate.

9,



CID

122

" I1I

C%2

cmv

-CM

QCC

0" 0"

at

cmc

cz

---------- L.,



cm-

cm- C

Cpp
Cv cp C= C

tvJ. C-l

cc$ Co



3L-Kx 14- T4 )(7

124

C" Q

Ep

cC- C

ccr

U-2j .

CD CD



7 KWLTE VS..-.- WVV a

Cp.

CD-

C C-

CD -P P C C.
- C..: -



0=

11"1-5 5 L LiC

TIME (sec)
LB 2

254

,0, 4

0, I 9 2 25

TIME (sec)

gu ,). 7 e G c : v. ,

V, %



-Y "-77-7

'N.

V

TIME (sec)
hp

2 55

. - 72.

' ,.

TIME (sec)

c-ur 6.6 ,.a,:i - E ige nva 1uE cf h e Ly apu n v qu ation for

the Lyapunov Funct ion Derived with Parameter

"nCCr Ein:-es, =10

e eo F-.3



.64.

> C

u-,-

- _

C

4..

9= Cw%

CS,
Lr ~ -x



129

04.aX1

C=1 c1

c

e- C13 Op
4~ Cp

0..J

I -

% Z. As

II -4 o

I I'

cv.-'

0 _-,

,7 N .X 4 ¢' % " - '< -, :- -;</ S , :-2- -: -''-' , < .;.'-'> ''.. : -- '- -:-: " '-.''"<;.'..->: 4". -0-.'



6.2.2.3 Robustness Improvements Through Lyapunov Func-

tion

For this linear problem, Doyle and Stein

improved the robustness characteristics ( or stability

margin ) by adding a "fictitious noise" term to the pro-

cess noise covariance matrix [41]. A more systematic

way to improve stability margins might be available by

taking a closer look at the Lyapunov function which con-

sists of combining the separate controller and observer '

Lyapunov functions (equation 2.67).

From Section II, the condition necessary for

this function to be a valid Lyapunov function is that

-L-RL-Q, L T R
-L-RL- LRL ~ ]< 0 (6.36)

L L -1~ -1 1 lH.TR - P -H T R_

00

This may not always be true ( and in the cases, so far,

it has not been true ) ; however, R, Q, Ro, and Q can

be choosen to ensure that the inequality constraint is

valid. Doyle and Stein's approach involved increasing

Qo' which would improve the negative definiteness of the

left side of equation (6.36). Another way might be to

decrease R This implies that, given the controller, -\
0

the measurement oevice has to have a certain accuracy tc

ensure the system remains stable. A tirj±r way would be
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to decrease Qc in the control design. Tris has the

effect of decreasing the control gain, L. Although this

can make the system more robust, it has the adverse

effect of reducing the response of the closed loop sys-

tem. There is a tradeoff to be made between system

response time and robustness to system modelling errors.

For this study, Q_ was changed to Qc by the fol-

lowing:

Qc =cQC (6.37)

where

C = .001 (6.38)

Tnis cna=c ed the control gain toS!
L 2 5 116 (6.39;

and satisfied the inequality constraint, equation

(6.42).

The closed loop simulation was run using this

2new control gain for q = 0 and AR = 0, -.25, and -.75.

Only a- = 0 was used since it demonstrated the lease

system robustness properties. Fiaures 6.9, 6.10, and

6.11 reoresent tne svs :em ny Doyle and Stein usinr the

control gain from eauation (6.26). Figures 6.12, 6.13,

'p

%~a~%V L. P ~ % 5 * ~ .V ~ * ~ '**~ *~ - .=



and 6.14 represent the same system with the exception of

the control gain, L, (equation 6.39) . The results on

the last three figures show that the system is much more

robust then the results using the original control gain;

although the system is somewhat less responsive.

Thus, this Lyapunov function provides a means

for making the controller/observer system more stable

(or robust) through an overall design selection of the

controller and observer oarameters.
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6.3 Linezr, Time-Varying Guidance Problem

The system selected for this analysis is

)N

x = Ax + Bu(t) + u , x(t x (6.40)

where x is a 6-state vector of the 2-dimensional com-

ponents of relative position, velocity, and target

acceleration, and u is the 2-dimensional missile

acceleration. In addition,

A = 0 6.41)

T 6 .4

= -L t)x (6.43

= (A-BL(t))R + K[y-HR] , x(t 0  = (6.44)

0

y = Hx + / (6.45)

H = C ( 6.46)

"" - (( , (6.47'0a (,o 0' ~eR
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Q = [ 0 (6.48)
0 .11

R = j .01 (6. 49)
0 0 01l

whereT is the target acceleration response time coef-

ficient and I is a 2x2 identity matrix. The initial

conditions for the closed loop system are

X = 3500 , 1508 , -1180 , -150 , 10 , 10 ]" (6.50)o

T

X = 3000 , 1200 , -950 , -100 , 0 , 0 ] (6.51)

6.3.1 Time-Varvinc Guidance Law

h C =-a15el s e e fc tISs comes

from linear auadratic Gaussian theory, and is derived

J :Z-;G - -6=ff 2,

subject to equation (6.40), where

G [ = 0 (6. 53)

- -

*-' * I = C-
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p2.:

This cost functional is constructed to ninamize

final miss distance with no weighting on final relative

velocitv nor target acceleration, and a weiqhted cost on

the control ( miss1le acceleration ) through the .

integral term [1091 The weighting factor, b, deter-

mines the degree of cost of control versus cost of ter-

minal miss distance. A small value of b implies more

emohasis is olaced on minimizing terminal miss distance

at the cost of control effort.

An important ooint to make is that the ootimiza-

tion problem is based on the assumption that the control

vector, , is the missile' s acceleration. Tnis imnIies

that the -issiIe has instantaneous resoonse and co.Z--te

control over all inertial acceleration components.

The o:-, ization orolem Oenerates a linear, J

closed-form control law of the form [109]

u(t) =- - [ I t i KI ]x(t) (6.55)

= - (6.56)

:'.._ = =_ " - € _,,€,<(6 .5
o l

, l e,.,., , '/. -C ,.- .., . , .' .,..' -v','o ---.% ," -, - ." . .'-' -. -- - ".-: '-"-' :.-..,-,... .. '



In practice, the control law, u(t) ,is a f unc-

tion of the esiae stts R(t) , and not the tr ue

states, x(t) , which are typically unknown. This is jus-

tified through the separation principle.

6.3.2 Time-To-Szo Error Analysis

Note that the control law, eauation (6.55) , is

an explicit functin of ta The theory that is used to

obtain the solution assumed that thek nalow time, tf, is

specified; therefore, to insure optimality, tf must be

known aEriori or at least accurately estimated during

figoht 1 9t. Sincte c no lw realistically known 

anriori esfecially for a maneuverin target i ute (or

0f

t ' s rt be esimate,. Stuies have sOWn t at theagir secalvfra aevr) tre o

accuracy of t can drastically affect the performance of

.o. ..... a I n owe:er , o e S

tnls have on tne performance of tne system?

To analyze tne effects of errors in t on the

performance of the closed loop system, consider model-

ling t as the following
g

= t -- B (6.58)

wnere i s a scale factor error, is biaS error an

is tne tree tLime- to-go, whicr. comes from equation

tf'. 56, wnere= t= is set to 4 seconds. Sca e factor
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errors are selected as 1.5, 1.0, and 0 .5. Tne effects

of these errors are evaluated separately from the oias

errors, which are selected as -0.2, 0, and 0.2.

Using equation (6.58) in the control law, a

simulation of the system defined in Section 6.3 was run

for the various scale factor and bias errors

(2 = 1 and P = 0 implies zero errors ) . The simulation

is used to evaluate the three Lvaounov functions derived

earlier: The Lyapunov function which is the combination

of the seperate controller and ozserver Lyapunov func-

tions, the Lyapunov function derived without parameter

uncertaInties, and the Lvarunov function derived with

parameter uncertainti es. For tne different values of

scale factor error and bias error, the three Lyapunov

inctiOl- --are_ cnecked to deter:n e i. f th-.ey remain a

valid Lvaounov function. The combined Lyapunov function

-i e for 11 x,e 1r .. _ scae '=-

toc and b -ias errors. The conditn for tn e slope of tne

L.-ounov functio., tc.oe nezatsv e fin-. . is

"N

*.5
'S
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cA K  K/c K+ A cK K ' K

-L DT R K 
c ~?KL K cK K K

T T 0 K ABK DK < 6.9
B K BM K K+11 KI

K K K~l

The Lyapunov function derived without parameter

uncertainties is also nosive definite for all x,e = 0

and all scale factor and bias errors. The condition for

the slope of the combined Lyapunov function to be nega-

-zve semid e nf -' for all x ano e comes fror ecuarion

(4.65). The Lvapunov function derived with parameter

2ncert&inz== :s :::: z: Jeli-e for a_ ~ = a .:'

equation (4.82) is s-itfe.. The sloce of tr4s

Lvapuno function is nezative semidefinie for all

va ues of scale . f ctor ano bia-s errors.

Since the system evaluated is a finite-time

proolem, the Lvanunov functions cannot be used as a

measure of system stazility. Tne LvaDunov functions =re

used to provide a measure of system cerformance. The

Zuestion is w.:n Laouno- function Is tne oetter one

for measuring systeM performance? Ficure 6.15 is a plot

"a
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of tne maximum eigenvalue of equation (6. 59) for the

combined Lyapunov function, given no scale factor or

bias errors. Since this shows equation (6.59) is not

negative semidefinite even for the error-free case, the

combined Lyapunov function is not a good measure of per-

formance for the system considered. The result is simi-

liar to the results found in the steady-state analysis.

The maximum eigenvalue for equation (4.65) starts at

- I)
zero for t=tf and remains approx imately -10 for

0 < t < tf and for all values of scale factor and bias

errors. This indicates that the Lyapunov function

derived without oarameter uncertai.ties is valid for all

time-to-ao errors. Figures 6.16 and 6.17 are plots of

tne minimum eigenvalue of the Lyapunov equation (equa-

tion 4.82 ) ) for thie Lvapu no function 6erived wit4

parameter uncertainties, given scale factor and Dias

t _ I c ida in. t hat tls Lyapunov function is

valid for all time-to-zo errors. Fi-ures E.18 and 6.19

snow the maximum eiaenvalue of the same Lvapunov equa-

tion, given scale factor and bias errors. These eigen-

values remain bounded for all values of scale factor and

bias errors.

The results of the last two Lvanunov functions

indicaZe that errors in ime-to- o do no: de ra e tne

performance of the svstem for 2 t <tc. Fioures 6.20-
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C

6.31 are plots of the magnitude of relative position,

velocity, and target acceleration; as well as their

errors from the estimation algorithm for the set of

launch conditions specified in Section 6.3. Thnese

results are useful in showing that the combined Lyapunov

function is a poor measure of performance for this sys-

tem with time-to-go errors.

Both the scale factor errors and bias errors do

not degrade the Derformance of the system. An error in 0

t basically meant that final time, tf was in error.

Since tf is considered a known parameter in the guidance

law derivation, the result is that a bias error in t

will cause the relative range to go to zero at whatever

the vauie of t, napoens to be. For instance, if E = -. 2

and t'f = 4, the estimate of fecomes 3.8 seconds.

Tner"ore, as seen in Fiure 6.20, ranoe aoes to zero at

&.. seconos. - i: c rel.ev ant wnaz nac ens _e- -en ._ 3

and 4.0 seconds, since the objective was to r7 e the

range value to zero. Scale factor errors only affect

the rate at which the range value converges to zero.

Note that because this is a time-varying, linear system,

an eicenvalue analysis cannot be performed.
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6.3.3 Taroet Acceleration Modellina Errors

System parameter uncertainties and tneir effect=

on system stability are discussed in Section IV. Since

the emphasis is on finite time problems, tne Lyapunov

function derived without parameter uncertainties (equa-

tion (4.21)) and the Lyapunov function derived with

oarameter uncertainties (ecuation (4.37)) are used to

provide a measure of system performance given parameter

uncertainties. This section focuses on errors in the

system matrix, A; in particular, errors in the target

acceleration time constant, }'T" As in the steady-state
TI

analvsis of Sections 6.2.1.2 and 6.2.2.1, the first

Lyapunov function is valid under a very narrow region

around tne true vue e of The Lvaounov function

derived with parameter variations is valid for a range

Consider the designed system matrix to oe oe-

fine c , as in Section In1, the followin: way

A = A (6.61)

where A is the modellins error and involves errors in

o on. v sinc the same svstem defined in section 6. 3,

sim- at cn -, s were cenera te for errors in , '.

jefined as toe followln2

I
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0

0 0 0( 6 . 6 0 )

where, = 0, 1, 2, and 3.

For these values of :A, the Lyapunov function

without parameter uncertainties and the Lyapunov func-

tion with parameter uncertainties are evaluated the same

way as in the time-to-go error analysis. The combined

Lyapunov function will not be used for any further

analysis since the same system is used, and it is shown J

that this Lyapunov function has a positive slope for

zero parameter errors.

Figure 6.32 is a plot of the maximum eigenvalue

of equation (4.65) for the Lyapunov function derived

without parameter uncertainties. For _/=0, the eigen-

-12
value is approximately -10 for 0<t <ft This small a

number cannot be seen on the figure . For - 7, the

maximum eigenvalue becomes positive, thus invalidating

this Lyapunov function. Fiqure 6.33 shows the minimum
4-.

eigenvalue of equation (4.82) for the Lyapunov equation

derived with parameter uncertainties. Figures 6.34 and

6.35 show the maximum eiaenvalue for the same Lyapunov %

'.equation. This Lyapunov equation indicates good perfor-

mance for . =O and 1; however, the function becomes

unbounded from above for = =2 and 3. Thus , for J_ >,2 , A

this Lyapunov equation indicates that the system will

-- r -e "- . ,- C ' P p C"

- - • • nm 
Ul /• 

l- 
I 

. .. 

-
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not perform well for all x and e.

Figures 6.16-6.43 are plots of the magnitude of

relative position, velocity, and target acceleration; as

well as their errors from the estimation algorithm for

the set of launch conditions specified in Section 6.3.

These results are useful in showing that the Lyapunov

function without parameter uncertainties is a poor meas-

ure of performance for this system with target accelera-

tion modelling errors. 0

p
l

.5.

€',

A
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p

'p P p ~ ' ~ ~



copy available to DTCd--suto
ptzil Uly legible jepod(L101

a~p

Cm,

MI,

P N

'-inME- A ,-J I. C



I-.:
- '-. C.

-I 

IV

NO ̂



I

.J.

'V

I! ~ I"V
"'V

I, -

ii U,'.

I I

V..

'V

1<1< 'V..- 2~ V.

~ -e
V .zc. 'V

-

-~ ZC~:

U,'
-c U,.

-- r~.-

- CL

/ I 'V.

I-

~Z.-

C.'-. *-~ 'V..-) I I VP

I
'V
I.-

V.

I

I"

'V

V.. ~ ~V.V.VI V ** *. *q'~* V-sr. V'~*~ - V **~V* V -. *'* / - * V V VV *V *V~V I
P V - - -



I 7

CPL

-~L- 7



171

+2. OE+03 4

1OKI.

+0. OE+00k,
0.0 1.0 2.0 3. 0 4.0

+1. 1E+03

>+1. OE+03

0

+9. OE+02LIII
0.0 C. 2. 0 3.0 4. 0

C.)

'2 +0. OE+00 1- -
0. .0 2 0 3 0 4

-JI (S1C)
3 6 an-- ve ocit , a-4 Taroe Aceler tla



,#.

172

"$+5. OE+02 -

,+2. 5E+02

+0. OE+00 --

0.0 1.0 2.0 3.0 4.0

I l I I I -

"+1OE +02-

Lai +CO +
""

0.0 1.0 2.0 1.0 4.

-1 OE+0 1

J+1. OE+01 - '

.I.

-i-. OE+0" I' -

0.0 1.0 2.0 3.0 4.0

TIVE (SEC)

'"

Error_- =



FLXI % .
9  

w

173

51

+2. OE+03 -

+0. 0oE+0 0 - , It
0.0 1.0 2.0 3.0 4.0

+1. 1E+03 -
C.)

NU,,1

0. 0 1.0 2. 0 3. 0 .0

"- +1. OE+O I

,-

+0. OE+0 I
0. 0 1.0 2.0 3.0 ,.0-

TIME (SEC) -

:"i~ure 6.38, Ranze, Jeloc, tv,._.= = , and Target A~ l-r t o-



174

I I

-+S. OE+02
L&.

0

+2. 5E+02

+0. OE+00 ?
0.0 1.0 2.0 3.0 4.0

t) +1. oE+o2

I-

•+1. OE+0
J.J00 1.0 2.0 3.0 4.0

¢.-.41.I0E4.01

, TIME (SEC)

I-



175

+2. 0E+03

+0. OE+00 -r
0.0 1.0 2.0 3.0 4.0

I,-S

+1. 5E+03 -

~+.OE+03

0

> +5. OE+02

I I ! I " -

0.0 1.0 2.0 3.0 4.0

+5. OE+02L

lz 40 .OE+O06r I
0.0 1.0 2.0 3.0 4.0

TIM (SEC)..

Ficure 6.40, Range, Velocity, an Target Acceleration

2'



. -. S .NT 7

-

176 

I-

I I
'+5. OE+02 -

0

+2. 5E+02

+0. 0E+00t- " 1 , f 1 , _ -
0.0 1.0 2.0 3.0 4.0

L6J

%.0o
'I'

f+2. OE+02

0

0
-Jw +0. O+0 -!
> 0.0 1.0 2.0 3.0 4.0

Ix1
S+5. OE+02

--J"

+0. OE+00.0 1.0 2.0 3.0 4.0
TIME (SEC)

Figure 6.41, Ran:e, Velocitv, anJ Target Ac:eleraton-
• Errors az. = 2

rr r

'Is . :



17 7

+4. OE+03

.0+3. OE+03

+2. 0E403r 
I

0.0 1.0 2. 0 3. 0 4.0

'- +3. OE+03 -

,,+2. OE+03

0 +1. OE+03

0.0 1.0 2. 0 3.0 4.0

" O+2. OE+04

w- 0 OJ0t-

0.+.0 + 0 . . . .

TI&C (SEC)

F.Jure 6.42, Rancie, Ve.loit\, anid Taroet Accelerata.on
3I



178

+2. OE+03
'-.

a: +0. OK+03 -. ;

0.0 1.0 2.0 3.0 4.0,.

I-

0

w +1. OE+03

l +O. OE+ 3 -

> 0.0 1.0 2.0 3.0 4.0

+ +2. OE+04 -

-aJ

-0. OE +0 -L
0.0 1.0 2.0 3.0 4.0

TIME (SEC)

,.i:ure 6.43, Range, Velocity_ and' Toge mcee~t
EIrrors 3



179

6.4 Homing Missile Guidance Problem with Angle Only

Measurements

The system selected for this analysis is identi-

cal to the one defined in Section 6.3, except that the

measurement model is a nonlinear function of the system

states representing an angular measurement from the fol-

lowing figure.

Ficure 6.44, AnouIar Measurement Related to
System States

The measurement model now becomes

y = h(x) + N , (, N(0,R (6.62)

wnere and
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L

G = h(x) = tan- ) (6.63)
X

The estimation algorithm can no longer be a linear Kal-

man observer, as in Section 6.3, since the measurement

model is nonlinear.

6.4.1 Pseudomeasurement Observer

The pseudomeasurement observer (PMO) is selected

as the estimation algorithm because it is reasonably

easy to mechanize ( like the extended Kalman observer

and it has global convergence properties [119,120]. The

algorithm for the PMo is [119,120]

=A + Bu + K(y -h(R)) , 0(tg) = (6.64)

wn e r e

K = pg(y R) -1 (6.65)0

p = Ap + pA- + Q - (R)R h(R)p
0 0

T -1 T~ l-- pg R o '.0(x)p + oh ()R h(R)p (6.66)

= (x) (6.67

The definition for modifiable [119,120] is t.nat

NI
I IWERM



n_ pa time-varying function h: R ->R p is a modifiable non-

linear system function if there exists a p x n time-

varying matrix of functions g: Rq x Rn -> Rp x n so that

for any x, x 4 Rn and y 4 Rq ,

* -K

h(x) - h(x) g(y ,x) (x - X) (6.68)

and

n(x) - h( ) = g(y* , )(x - ) (6.69)

6.4.2 Target Acceleration Modelling Errors

The target acceleration modelling error analysis

follows the same work discussed in Section 6.3.3, where

thne target acceleration modellinj error comes from eaua-

tions (6.62) and (6.61) , and whiere , is selected as 8,

1, 2, and 3.

For these values of A, both the Lyaounov func-

tion without parameter uncertainties and n e Lyaounov

function with parameter uncertainties are evaluated

using the PMO algorithm and the initial conditions from

Section 6.3 and 6.4. Figure 6.45 is the maximum eicen-

value of ecuation (4.65) for the Lvapunov function

derived without arameter uncertainties. Tne resits

incicate tr.at for very sma l l )A (izA=lC - , the iTaxi,u,

elaenvalue Decomes ODSItive, thus inv aI0atIn tr. I s
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Lyapunov function. Figures 6.46 and 6.47 show the

minimum eigenvalue of equation (4.82) for the Lyapunov

function with parameter uncertainties. Figures 6.48 and

6.49 show the maximum eigenvalue for the same Lyaounov

equation. This Lyapunov equation shows that the system

performs well for _T=0 and I. For L=2 and 3, the

Lyapunov function indicates that the system will not

perform well for all x and e.

Figures 6.50-6.57 are plots of the magnitude of

relative position, velocity, and target acceleration;

as well as their errors from the PMO for the set of

launch conditions soecified in Section 6.2. Again,

these results are useful in showing that the Lyapunov

function der ived without para meter uncerti:nties is a

poor measure of oerformance for this system witn targe:

acceleration modelin: errors.
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6.4.3 Dbserver Performance Imorovements

The purpose of this section is to demonstrate

the usefulness of the LQG guidance law, derived to

minimize terminal miss distance as well maximize the oo-

servability Grammian matrix of the PMO ( equation 5.22-

5.25 ). To simplify the analysis, a 2-dimensional sys-

tem model is used. For a 2-dimensional system, the

measurement model comes from equations (6.62) and

(6.63). For the PNIO, the measurement model is

y = H(z) x (6.79)

where 5

'iz) = sinG , -cos- , , , , ,6.8)

.... i . 0 a e n.. 5 . . "C e.

which is a 6x6 matrix.

-.'.)
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Given the following intercept geometry

e

,°_

e 5 8, Intercept Geometry

the following initial launch conditions are selected to

closely matcn tnose by Hull, Spever, Tsen, and Larson

[61: Initial range of 3000 ft., missile velocity of

39 t. s S ., -a-r:et velocitv of 3 . . t -e

direction of E = 30 deg., and zero target accelerazion.

Figures (6.59) and (6.60) snow tne results of

using pro-nay guidance and the LQG guidance law ( equa-

tion 6.55 ), respectively. In both cases, the main goal

is to hit the target.

To solve the LQG guidance law which increases

the PMO's observability Grammian matrix ( equations

5.11-5.12 ) , the differential ecuations (equations

5.22-5.25) .have to oe solved backward in time from t, to



The first step is to use the foliowing approxima-

tion for tf, since it is not readily available.

tf = - -(6.82)
R

With this tf, the guidance law is solved and implemented

in the simulation, where the results are on Figure

(6.61) for c( = .667. The missile swings past the line-

of-sight to the target and then comes back. This is

similiar to the results of Hull, Speyer, Tseng, and Lar-
S'N

son [63], except that the missile overshoots the target

at the end. This is because tf is an approximation

(equation 6.73) and is only solved once.

The next step is to update tf periodically, as

is done in the LQG quidance law, and resolve the new

guidance law each time. The new results, shown in Fio-

'e (6.62') ,snow a S-mi-ar trajectory with tne exception

that tne missile hits the taraet.

Increasing the PMO's obser vanil ity Gram:an

means decreasing the PMO's error variance. To show if

this new guidance law decreases the PMO's error variance

matrix (equation 5.11) , a time-plot is generated of the

maximum eigenvalue of the error variance -.atrix of the

PMO, with both the stancard LQG guidance law and the new

LQ- guidance law. The results, (Ficure (6.63;), sh ow

that the error variance is reduced by the new LQ,- aui-

, .z e-; w Co.
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dance law, as would be expected. The minimum eigenvalue

shows the same trend.

In addition, the minimum and maximum eigenvalues

of equation (4.65) for the Lyapunov function derived

without parameter uncertainties are generated for the

new guidance law using the PMO and the LQG guidance law S

using the same observer. Figure 6.64 shows that the

minimum eigenvalue of the Lyapunov equation for the new

guidance law has a slightly larger negative slope and I

more positive value, but still remains bounded. The

increased slope is due to the fact that the system ini-

tially diverges to improve observability. Figure 6.65 P

shows the same trend for the maximum eigenvalue.

The results show that the guidance law causes

the missile to maneuver in such a way as to improve the

observability of the nonlinear measurements with a

slight deterioration to the Lyapunov funtion. The end

result is a guidance law that still hits the target, and

in addition improves the PMO's performance by increasing t%

its observability Grammian matrix. The fact that the

maximum ei>.3nvalue of the Lyapunov equation has a larger

slope indicates that the convergence is faster than that

of the LQG guidance law. The larger positive value in

the beginning is due to the missile's initial deviation

from the :arget.



300.0

L400. 0

11O0. 0,

C. 0o; "

0.0 250.0 500.0 75.0 100'0.0 125'0.0 1500.0
X-AXIS

F'iure 6.59, , Po-Nav¢ Guidance

aF



X 10RT 7 1, K .1

300.0 .

4400. 0.

0. o

0. 25 . 0 . 5 . 0 0 0 1 5 . 51.

XIAXI

100.r 6.0 A-G u da c



'

400.0.

300.0

4200. ,,

100.0.

sp

-100 00_________________________
0. 0 500.0 1000.0 1500 0

X-AXi S

Figure 6.61, LQG With Error Variance
Reduction Guidance

I'N



I
I

400.0

300.0I 1I
2 0 0 .0,

100.0 -

0.0

-100.0_
C.'0 250.0 500.0 75C.0 1000.0 1250. C 1500.0

X-,AXZS

Figure 6.62, LQG With Error Variance Reduction
Guidance, tf Updated

.,'



204

30000.0.

LQG GUIDANCE ,

25000.0- NEW GUIDANCE

20000.0

15000.0 -

10000.0

5000. 0

TIME (SEC)

Figure 6.63, Maximum Eiqenvalue of the Error Variance Matrix

Id~



LMII

coe

C%3 -4 cl c

CP co co



2 0

C_ rdr

c C

C~CC
0I

CMrC

_,- C.) M!.

C- UJ. -.;cC-

pw

wr r WC vw



2 ' %

SECTION VII

CONCLUSIONS

Given the linear , time-varying closed-loop sys-

tem with an observer in the loop, several Lyapunov func-

tions are derived for the first time, to show that these

systems are stable in the sense of Lyapunov. The

Lvapunov functions are used to provide a measure of Der-

formance, indeoendent of the path taken, for the linear ,

finite-time problem, and certain classes of nonlinear,

finite-time oroblems like the hotina missile nroblem.

The Lyapunov function which consists of adding

the controller Lvaounov function by Anderson and Moore

,6 to the observer fno' function D% Sono -n Sever

[119,120] is not valid for all controller/observer svs-

te s. However, tne conzrcliier oerformance index is

scaled such that the combined Lyapunov functions are

valid without affecting tne control gain. Further, this

Lyapunov function is used as a means of improving the

stability of the controller/observer system through an

overall design selection of the controller and observer

parameters to meet the Lvapunov function requirements.

This is demonstrated in Section 6.2.2.3; where the con-

troller oain iS oesizned based on the cotbined Lvaounov

function.

;.I, ; '.
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Since the combined Lyapunov function is not

valid for all controller/observer systems, a Lyapunov

function is derived for the cascaded system. The result

is a Lyaounov function which consists of the separate

controller and observer Lyapunc,7 functions and an addi-

tional term, which is a coupling of the system states

and the observer errors. This Lyapunov function is

valid for all controller/observer systems. When svstcm

oarameter uncertainties are introduced, this Lyapunov

function is not very useful for identifying system sta-

bility. This is shown in Sections 6.2.1, 6.2.2, 6.3.3, .A

and 6.4.2.

A Lyapunov function is derived to directly ac-

count for system Daram etar variations. This Lyapunov

function is very accurate In identifying syszerr saii i-

tv of the linear, time-invariant system under parameter

variations when co-na r ec t3 eigenvalue 3 nalvsis. Tn::

Lyapunov function is also useful in providing a measure

of sv tem Der formance for the linear , time-varying,

finite-time Droblem and the homing missile guidance

problem. The results of this are in Sections 6.2.1,

6.2.2, 6.3.3, and 6.4.2.

The control law wnich is designed for the mis-

Ei ez. -Jiance oronlem to minimIze term ina mIss as

as imorove tne oerformance of an observer in tne I o o

% 'ON r ae _ i

A.ill'1 PF-



causes the missile to maneuver in such a way as to in-

crease the ooservability Grammian matrix of the ooserver

and still hit the target. The results are very close to

those by Huil, Speyer, Tseng, and Larson [631. The

Lyapunov function from Section III, which is used as the

basis for the derivation of this guidance law, snows an

improvement in performance over the linear quadratic

Gaussian auidance law. The main contribution is that a

closed-loop solution of the control law is obtained.
S

There are several limitations to the usefulness

of the Lyapunov functions derived for the linear, time-

varying controller/observer cascaded system, First, they

are only valid for the deterministic systems. Second,

thev can onlv oe used to determine system staDilitv for

tn lnin a - ime oroblee. Even tnen, it is a :f i-

ciencv condition for stability. For the finite-time

rocl., - >aounov fnctions can only oroviie a meas-

ure of system Derformance. Thir , the performance meas- •

ure is determined oy solving oackward Lvapunov equa-

tions. This requires a fairly good estimate of the fi-

nal time for the system of interest. For the homing

missile cuidance problem, an estimate of final time is

relatively easy to obtain. And fourth, Lyapunov func-

tions are not unioue. Tnere are several Lvapunov func-

tions 6er d ve_ in tnis dissaertaion, some of 'nizfn are

more useful than others. There may oe a Lvacuno f.nc-

JS
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tion that is even oetter suited for this type of system.

There is a need for future research in stability

analysis of closed-loop systems with an observer in the

loop. The Lyapunov functions should be expanded to sto-

chastic systems, which have a more practical meaning.

Since the Lyapunov function is not unique, the develop-

ment of a Lyapunov function for other aspects of system

performance (other than parameter uncertainties) should

be considered.

Pr 4



APPENDIX A

INVERSE OF DISCRETE ERROR COVARIANCE (Os)

Given the discrete Kalman filter equations

XK+l = xK + KK[YK KY (A.1)

Y HKXK + N'K ' "N(A RK) (A.2)

define

p-K E[(x K  K K) (xK - ) ] (A. 3)

= x V - ( - xCA.4
K K K K

Substitutina eauations (A.1) and (A.2) into (A.3)
,S

results .n9

PK '. ,, x K- x K -K K H K xK + /K K K .-"

*(XKx.KKK(HKXK+(/KHKK))T (A.5)

- E[L(I-KKHK)(xK-xK)-KK(/K)((I-KKHK)(xK-K)-KK(/K) T](A.6)

NtS



E[(I-KKHK) xK) - T(I -KHT + E[KKVK(/ K]

- E[KK(/K (XK-xK) T (I-KKHK)TI

,T T
£4 (I-K KH K) - / K VK (A.7)

Carrying thLough the expected value and noting

that the mcasurement noise ((/) is uncorrelated with the

states, xK  the result is the Joseph-Bucy form of the

update equation for the discrete Kalman filter

P (I - KKHK)TK(I - KKHK) T + KKRK K T (A.8)

where

S+ Q
" K K-1 K-K-I K(-.

.iombinin eqations (A.8) and (A.9) results

P= (IKH A P T TK - KKK -i" K (I - KKHK)

+ (I K HT T (Al)4S(I K KHK)QK (I KKHK) K K TRKKK

Define

K (I - KKHK)AK_ (A.!1

Y= i - KKHK)QK( - KK) T KKRKK KT (A.12)

KS K K K K K K K '



sucn that equation (A.10) becomes

K T + yK (A.13)

The Lyapunov function for the observer is selected as

T -i
VK(xK,eK,tK) K K K(A.14

where

e K+ A =KeK (A.15)

and

- A + (A.16)
K- K K eK

.....re is deri-ej ov develooinz /V as follows:
KK

V K+l - K

= eK [A TVK 1 A - ]eK  (A.17)

Substituting equations (A.8) and (A.9) into equation

(A.17) for P- results in
K+r

.iV = e { T T ' -,K (A 18_S,
K7K KKL K"K "K - K

By assuming (AKK is controllable and (AK HK) is %
q , - , K.. . .,

.L~s a~- ~ ~ ~ ~~ . ~ .
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I

ooservable, the system described by equation (A.15) is

asymptotically stable. Therefore, eK must converge to

zero and AK is nonsingular. Equation (A.18) becomes

T -1l -T )-1 -l-

VK = eK[(PK+AK KA- PK ]eK (A.19)

I
Applying the matrix inversion lemma to the right side of

equation (A.19) results in

T -. -- 1 -1 - I-T -
/1VK = eK[-P K K (  +AK PK A K AK pK ]eK (A.20)

which is negative definite for e K,0. Therefore, Q.K'-K

becomes

1 1 A - I (A. 21
K 'K K K K "K K K

"0

ixS

S

I
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APPENDIX B

STOCHASTIC DIFFERENTIAL / DIFFERENCE EQUATIONS

Continuous-Time Problems:

Let O(x,t) be a scalar real function continu-

ously differentiable in t and having second mixed par-

tial derivatives with espect to x, then the differential

dO of 0 is
p

d6 = j tdt + x dx + 0.5tr(GQGTxx )dt (B.1)

for the stochastic differential equation

dx = f(x,t)dt + G(x,t)dp (B.2)

E[d~d T ]I = Qdt (B.3)

The stochastic differential equations for the

closed-looD system are

x - (A-BL)x + BLe + w , u~ N(,Q) (B.4

e = (A-KH)e - K(/ + u , B N(CR) (.5)

Rewriting these equations in a more general form

dx = '(A-BL)x B SLe~dt + dE (B.6)



2!6

de = (A-KH)edt - Kd(/ + dp (B.7)

where dp L u dt , d( = /dt.

and ( are brownian motion processes with the following

properties

E[dp] = E[d(/] = 0 (B.8)

Tdt (B.9)

E[ddT] = Rdt (B.10)

E [dd/T] =0 (B.II)

civen the following definitions

X = E[xxTI (B.12)
,X

S = E[xeT . 3

TP = E[ee T ] (B.14)

Applying equation (B.1) to (B.12) first results in

|• |
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dX = dE[xxT] Ed[xx
T

=E{ ([(A-BL)x + BLejdt + dp)xT

+ x (A-BL)x + BLe]dt + dp)T

+ dd Tdt} (B.15)

Carrying the expectation through, using the definitions

(B.12)-(B.14), equation (B.15) becomes

dX = [(A-BL)X + X(A-BL) T + BLST + SLTBT + Qdt (B.16) S
which can be rewritten as

3(ABL T T B ST T
X =- (A-BL)X X(A-BL) + BLS + SL B + (B.19)

koplying equation (B.1) to (B.13) results in

dS = dE[xeT] Ed[xeTI (B.20)

= E{([(A-BL)x + BLe]dt + dp)eT

T9

+ x( (A-KH)edt - KdV + d p)T + Qdt} (B.21

= E[(A-BL)xe
T + BLee T]dt + d~e T

+ xe T(A-KH)dT - xd(/TK T + xdT Qdt} (B.22)



Carrying through the expectations, using the definitions

(B.12)-(B.14), equation (B.22) becomes

dS = [(A-BL)S + BLP]dt + S(A-KH) Tdt + Qdt (B.23)

which can be rewritten as
S - dS

dt (A-BL)S + S(A-KH) T + BLP + Q (B.24)

Applying eauations (B.1) to (B.14) results in

dP = dE[ee T ] = Ed[ee T ] (B.25)

TS
E{t[(A-KH)edt - KdV + JP]e

+ e[ (A-KH)edt - Kd(i + dp] T

+ (KRKT - ) t -t (B.26)

m m

E; (A-KH)ee'dt- Kd(/e'd~e&

T T TT T P
+ ee (A-KH)Tdt - ed(/ K + ed T

+ (KRKT + Q)dt} (B.27)

tN



I

219

dP = (A-KH)Pdt + P(A-KH) Tdt + (KRKT + Q)dt (B.28) -5

which can be rewritten as

dP T T
P = - (A-KH)P + P(A-KH) + KRK + Q (B.29)

Equations (B.19) ,(B.24) , and (B.29) are the constraint

equations for the continuous-time optimization problem. I

Discrete-Time Problem:

The stochastic difference equations for the

closed-loop system are

x A KXK + BKLKeK + WX (B.30) a

--- + K K K K KK K+

K+ -K-K K+l + j. , (3.31

where

AK= AK - BKLK (B.32)

A =A K H A (.3
K - K - KK+l K+lK (.33)

I

N N(0Q) /- N(O,TK (B.34)
'a-.

Given the following

N
X = E[XKXK ]  (B.35',

K-

-a-

S. 5 % a~ ~ :-. 5 %,A v % . - 5a s ~ p~ --. ~ a **
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X = E[Xx T (B. 36)
K+1 K+l K+1

E{ [AKxK + BKTKeK + WK]

*[AKX + BKLKeK + UI (B.37)

T-- + AKXAKXE{ { K KK K K KUAK]

T-T + L e -+T-m-
K KKKXKAK K  KeK KU K

+ B Le TT + a T T
K KK KK K KK KK-K

+BL T  + uT-T T (B.38)KLKeKUK u WXKAK + ueKL. . .x K"

and carrying through the expectation in equation (B.38)

results in

T T -

+BKLKPKLKBK + K (B.39)

Given

TSK E[xKe] (B.40) ,

T I.".

= E[x e (B.41)SK+I " K+leK+l"

= x + BKLKeK + "iK] [AKeK K K(B.4

K0

We,
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*2 1

T T K T
K KK K K K (/K+l K+I + AKLKeK

+ BL eTrT _BL e VT K T + B Le T
K K K K K KKKK+l K+l K K K

T T IT T T
+K' weA K - ui.'K K~ +Uu (B.43)

and carrying through the expectation in equation (B.43)

results in
I

T T -S S AT+BLPA + Q (B.44)K+l K K K K K K K K

Siv en
-I e n

p= r T
PK E Le KeK] (B.45)

PK+l = E[eK+eK+l

=E: (A e K~ ~ V B 7K+l + (AKeK K+l(Kl +(B.46

T T T T T
=E:.KK e KeK -K A VeKKV K I + AKeKK

K K TK K+ KT + AKeT

-Kl K ~ K K- l K~l K L K+l K+l Kl.-

TT IT T T,+ UILKeK.-.K - (.KK (+1  ,

and carrying trnougn the exoectation In eauation (B.46)
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results in

K~lT T

P K+I A KPK K + KK+1RK+l KK+1 KI (B.49)

Equations (B.39) , (B.44) , and (B.49) are the constraint

equations for the discrete-time optimization problem.
p
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APPENDIX C

LYAPUNOV FUNCTION VIA HAMILTON-JACOBI EQUATION

The performance index is as follows:

T T
xfGfxf + efTfef

tf fT Tc",

+ f ( x + e Qee + u R u)dt (0.1)

subject to

x = Ax + Bu (C.2)

e = (A - KH)e (C.3)

where

I

u = -LR = -L(x-e) = u * Le (C.4)

L R cB"x (C.5)

and u is the optimal control.

Define tne Lyapunov function as the optimal return func-

tion

V x + e=/ e min'J'; = (C.6)

,sin-- tnese eouations and tne Hamilton-Jaconi equation

-2 -_J I
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A

.4

- - min{Hl (C.7)
u

where H ( the Hamiltonian ) is represented oy the par-

tial differential equation:

H = x + Te- e

T T
+ x Q x + e Q e + uR cu (C.8)

the differential equations for /X and /1p are derived by

equating like-terms in equation (C.7). First, solving

eouation (C.8) results in

T T
H = 2x (Ax+Bu) + 2e N (A-KH) e

TQ~ T e  T

+ XQx + e e + uRu (C.9)
e

Tne minimizaticn with resDect to u is accom-

plished by making the following substitution from (C.4)

u -R- B x + Le (C.10)

Therefore

jI
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min{H} = xT/\Ax + xAAxx - 2x/\XBR cB /\XDx

u

+ 2x T\BLe + e /yAe + eTA e + xTQcx

T 1 iT T -1 T
+ e Qe e + (Le-Rc BT/Xx)TRc(Le-RI BT/\xx) (C.11)

where A = A - KH 
p

Tne left hand side of equation (C.7) is V

= X x + e Ap e (C.12)

Equation (C.11) and (0.12) are substituted in Equation

(C.7).

T' T T

0= X A x x + e e + e + X /\Ax + xTAJ/\x

x- L RxTLx + e /A.4e 1 eAT/ e x'Q x

+ eTQee + eTLTR Le (0.13)

or

0-=xT + / A - AW\' - TRL + Qc}x

+ e , L + R (0.14)

M/\v RL+"A



This leads to the following differential equations.

-/\XA A /X+LR L - (.5

-T - T
A ---- - A/p- LRL - ( (.16)

Using equation (C.5) , the differential equation

for /\X can be rewritten as

-T T

where A = A - BL

Thus, eauations (C.16) and (C.17 are the same as those

derived in Section III.

With parameter uncertaintv in the dvna',ic ezuat icns, 

equations (C.2) and (0.3) are writuen as

x = A'x + B'u (0.18

e = Dx + A'e (.19)

where

A' = A + (A - A ) (C.20)B B,.
S

B' = B (3 -,3j,(0,,1
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0
A' = A - K H + (B-B.L - K_(M-M.)L (C.22)

c cc c CC

D = (A-A - K(H-H_) - (B-B )L + K (M-M )L (C.23)
c K c C c

Using equations (C.18) and (C.19) , the Hamilton-Jacobi

equation (C.7) becomes

0 = xT\x + xT/se + E Tx + E T/pe

+ XT/AIX x + xTA' A/\x - x /B'Lcx x TLTB' I/x

+ xT/BILe + eTLTBT eT/LA B + TT/e

- eT B'LcX - x L B'T/'ye + e TB'Lce + eTLTB'T Ne

TT T. T T c -r x/ .Dx +~ x D/\ 3 X - D x D /\ e x \sA'Ie

T 'Tx + e e ' ,-e + x'Q x + eI e

+ xTL RLx - xTLTR L e - eTL RL-x + eTLTRL e(C.24)

T T TCollecting x { Ix, x { le, and eT{ le terms while noting S

c B T/\ (C.25)

results in

0 P -F -®



= -AS\A' - A' - L R 'CL. Q

AS AD -Dj- /\B'L- - LCB' AX (C. 26)

_/, -\,SA' A A/T\S L LBITAS

T T- /p - /\B'LC + cL c CC. 27)

= -,A ~ /\p - A B'LC

B- T, - _ T C,2,
Lc Qe L cR cL c(C28

By letting

B = B'L (C.29)

= A' - B'Lc (C.30)

equations (C.26) tnrough (C.28) can be rewritten as

- -A' - I.
;\x --/\xA' - A ' -/\ - LcR L

Q /\S - DT T (C.31)

c|

- ~c T

I? - 7\x (C.32)
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'T T ~C.

These equations are the same as those derived in Section

IV.
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